Skip to main content
Log in

Self-consistent modelling of hot plasmas within non-extensive Tsallis’ thermostatistics

  • Regular Article
  • Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A study of the effects of non-extensivity on the modelling of atomic physics in hot dense plasmas is proposed within Tsallis’ statistics. The electronic structure of the plasma is calculated through an average-atom model based on the minimization of the non-extensive free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.F. Rozsnyai, Phys. Rev. A 5, 1137 (1972)

    Article  ADS  Google Scholar 

  2. R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949)

    Article  MATH  ADS  Google Scholar 

  3. D.A. Liberman, Phys. Rev. B 20, 658 (2006)

    Google Scholar 

  4. B. Wilson, V. Sonnad, P. Sterne, W. Isaacs, J. Quant. Spectrosc. Radiat. Transfer 99, 658 (2006)

    Article  ADS  Google Scholar 

  5. R. Piron, T. Blenski, Phys. Rev. E 83, 026403 (2011)

    Article  ADS  Google Scholar 

  6. T. Blenski, K. Ishikawa, Phys. Rev. E 51, 4869 (1995)

    Article  ADS  Google Scholar 

  7. J.C. Pain, Contrib. Plasma Phys. 47, 421 (2007)

    Article  ADS  Google Scholar 

  8. A.R. Plastino, A. Plastino, Phys. Lett. A 174, 384 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Nobre, C. Tsallis, Physica A 213, 337 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. J.A.S. Lima, R. Silva, A.R. Plastino, Phys. Rev. Lett. 86, 2938 (2001)

    Article  ADS  Google Scholar 

  11. R. Silva, Phys. Lett. A 352, 17 (2006)

    Article  ADS  Google Scholar 

  12. C. Tsallis, J. Statist. Phys. 52, 479 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. J. Du, Europhys. Lett. 75, 861 (2006)

    Article  ADS  Google Scholar 

  14. S. Nadarajah, S. Kotz, Physica A 465, 377 (2007)

    MathSciNet  Google Scholar 

  15. M. Masi, Phys. Lett. A 338, 217 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. F. Büyükkiliç, D. Demirhan, Phys. Lett. A 181, 24 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Büyükkiliç, D. Demirhan, A. Güleç, Phys. Lett. A 197, 209 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. E. Martinenko, B.K. Shivamoggi, Phys. Rev. A 69, 052504 (2004)

    Article  ADS  Google Scholar 

  19. S. Ichimaru, H. Iyetomi, S. Tanaka, Phys. Rep. 149, 91 (1987)

    Article  ADS  Google Scholar 

  20. J.C. Pain, T. Blenski, Laser Part. Beams 20, 211 (2002)

    Article  ADS  Google Scholar 

  21. J.C. Pain, T. Blenski, J. Quant. Spectrosc. Radiat. Transfer 81, 355 (2003)

    Article  ADS  Google Scholar 

  22. J.C. Pain, G. Dejonghe, T. Blenski, J. Quant. Spectrosc. Radiat. Transfer 99, 451 (2006)

    Article  ADS  Google Scholar 

  23. J.C. Pain, G. Dejonghe, T. Blenski, J. Phys. A: Math. Gen. 39, 4659 (2006)

    Article  ADS  Google Scholar 

  24. J.C. Pain, J. Phys. B At. Mol. Opt. Phys. 40, 1553 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Pain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pain, J.C., Teychenné, D. & Gilleron, F. Self-consistent modelling of hot plasmas within non-extensive Tsallis’ thermostatistics. Eur. Phys. J. D 65, 441–445 (2011). https://doi.org/10.1140/epjd/e2011-20432-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20432-5

Keywords

Navigation