Skip to main content
Log in

An investigation into the Coulomb logarithm models and their effects on the electron heat transfer in warm dense plasmas

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A comparison study of various models in investigating the Coulomb logarithm (CL) for a wide range of densities and temperatures is carried out. Using two known reference parameters, the ion coupling \( \varGamma \) and the electron degeneracy \( \varTheta \), the capability of a recently proposed coupled Gericke–Murillo–Schlanges (CGMS) model in evaluating the CL is compared with other previous models—the Gericke–Murillo–Schlanges (GMS) model, the Landau–Spitzer (LS), the Brown–Preston–Singleton (BPS), the classical molecular dynamics (MD), and Khrapak (KH) model. It is observed that the CGMS model shows reliable results in both weakly and strongly coupled regimes. Moreover, the effects of using these models on studying electron heat transfer and conductivity coefficient within the weakly coupled and strongly coupled plasmas are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S Weber, et al. Matter Radiat. Extremes 2 149 (2017)

    Article  Google Scholar 

  2. S A Pikuz, et al. JETP Lett. 105 (1) 13 (2017)

    Article  ADS  Google Scholar 

  3. S Atzeni Plasma Phys. Control. Fusion 29 1535 (1987)

    Article  ADS  Google Scholar 

  4. S H Glenzer Phys. Plasmas 24 041301 (2017)

    Article  ADS  Google Scholar 

  5. K Falk High Power Laser Sci. 6 e59 (2018)

    Article  Google Scholar 

  6. Q Ma, D Kang, Z Zhao and J Dai Phys. Plasmas 25 012707 (2018)

    Article  ADS  Google Scholar 

  7. L X Benedict, et al. Phys. Rev. E 86 046406 (2012)

    Article  ADS  Google Scholar 

  8. J Vorbergera and D O Gericke High Energy Dens. Phys. 10 (2014)

  9. S D Baalrud and J Daligault Phys. Rev. Lett. 110 235001 (2013)

    Article  ADS  Google Scholar 

  10. J Daligault, S D Baalrud, C E Starrett, D Saumon and T Sjostrom Phys. Rev. Lett. 116 075002 (2016)

    Article  ADS  Google Scholar 

  11. D Kremp, Th Bornath, M Bonitz and M Schlanges Phys. Rev. E 60 4725 (1999)

    Article  ADS  Google Scholar 

  12. L Spitzer Physics of Fully Ionized Gases (Interscience, New York) 2nd edn. (1962)

  13. Y T Lee and R M More Phys. Fluids 27 1273 (1984)

    Article  ADS  Google Scholar 

  14. L S Brown, D L Preston and R L Singleton Phys. Rep. 410 237 (2005)

    Article  ADS  Google Scholar 

  15. L S Brown and R L Singleton Phys. Rev. E 79 066407 (2009)

    Article  ADS  Google Scholar 

  16. D O Gericke, M S Murillo and M Schlanges Phys. Rev. E 65 036418 (2002)

    Article  ADS  Google Scholar 

  17. Q Ma, et al. Phys. Rev. Lett. 122 015001 (2019)

    Article  ADS  Google Scholar 

  18. S A Khrapak, A V Ivlev, G E Morfill and S K Zhdanov Phys. Rev. Lett. 90 225002 (2003)

    Article  ADS  Google Scholar 

  19. J N Glosli, et al. Phys. Rev. E 78 025401 (R) 2008.

    Article  ADS  Google Scholar 

  20. C Blancard, J Clerouin and G Faussurier High Energy Dens. Phys. 9 247 (2013)

    Article  ADS  Google Scholar 

  21. L Liu, Z G Li, J Y Dai, Q F Chen and X R Chen Phys. Rev. E 97 063204 (2018)

    Article  ADS  Google Scholar 

  22. B Xu and S X Hu Phys. Rev. E 84 016408 (2011)

    Article  ADS  Google Scholar 

  23. Y H Ding, A J White, S X Hu, O Certik and L A Collins Phys. Rev. Lett. 121 145001 (2018)

    Article  ADS  Google Scholar 

  24. M Temporal, B Canaud, W Cayzac, R Ramis and R L Singleton Eur. Phys. J. D 71 132 (2017)

    Article  ADS  Google Scholar 

  25. M Oloumi, M Habibi and H Hosseinkhani Contrib. Plasma Phys. 58 846 (2018)

    Article  ADS  Google Scholar 

  26. Q Ma, et al. Phys. Rev. Lett. 123 099901(E) (2019)

  27. G Dimonte and J Daligault Phys. Rev. Lett. 101 135001 (2008)

    Article  ADS  Google Scholar 

  28. S D Baalrud Phys. Plasmas 19 030701 (2012)

  29. M S Chu Phys. Fluids 15 413 (1972)

  30. S Jardin Computational Methods in Plasma Physics (Chapman & Hall/CRC, Taylor & Francis Group) (2010)

  31. M Habibi, M Oloumi, H Hosseinkhani and S Magidi Contrib. Plasma Phys. 55 677 (2015)

    Article  ADS  Google Scholar 

  32. S X Hu, et al. Phys. Rev. E 89 043105 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hosseinkhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oloumi, M., Habibi, M. & Hosseinkhani, H. An investigation into the Coulomb logarithm models and their effects on the electron heat transfer in warm dense plasmas. Indian J Phys 95, 2231–2236 (2021). https://doi.org/10.1007/s12648-020-01883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01883-4

Keywords

Navigation