Skip to main content
Log in

Quenching vibrations of cesium dimers by He at low and ultralow temperatures: quantum dynamical calculations

  • Regular Article
  • Cold and ultracold molecules
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This paper analyses in detail the energy redistribution from the upper vibrational levels of Cs dimers, thought to be obtained from initial recombination processes that generate excited internal states of the triplet configuration 3Σ + u . Their quenching is examined as they are made to further collide with 4He buffer gas at temperatures below and around 100 mK. The relevant cross sections are computed by using a multichannel quantum dynamical approach and employ a full, ab initio potential energy surface. Due to their smallness (see Ref. [R.B. Ross, J.M. Powers, T. Atashroo, W.C. Ermler, I.A. LaJohn, P. Christiansen, J. Chem. Phys. 93, 6654 (1999)]) the fine structure effects have not been explicitly included in this study. The final, cumulative cross-sections are discussed and analyzed in terms of the overall quenching behavior shown by different initial states of the dimer and in terms of the changing ratios between collisional cooling and vibrational quenching cross sections as a function of trap temperature. The corresponding quenching rates are also computed and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Ross, J.M. Powers, T. Atashroo, W.C. Ermler, I.A. LaJohn, P. Christiansen, J. Chem. Phys. 93, 6654 (1999)

    Article  ADS  Google Scholar 

  2. for a recent review see: O. Dulieu, C. Gabbanini, Rep. Prog. Phys. 72, 086401 (2009)

    Article  Google Scholar 

  3. C. Chin et al., Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  4. M. Schnell, G. Meijer, Angew. Chem. Int. Ed. 48, 6010 (2009)

    Article  Google Scholar 

  5. B. Friederich, J. Doyle, Chem. Phys. Phys. Chem. 10, 604 (2009)

    Article  Google Scholar 

  6. R.V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008)

    Article  Google Scholar 

  7. E. Bodo, F.A. Gianturco, A. Dalgarno, J. Chem. Phys. 116, 9222 (2002)

    Article  ADS  Google Scholar 

  8. J.M. Hutson, P. Soldán, Int. Rev. Phys. Chem. 26, 1 (2007)

    Article  Google Scholar 

  9. E. Bodo, F.A. Gianturco, Int. Rev. Phys. Chem. 25, 313 (2006)

    Article  Google Scholar 

  10. P. Barletta, J. Tennyson, P.F. Barker, New J. Phys. 11, 055029 (2009)

    Article  ADS  Google Scholar 

  11. P. Barletta, J. Tennyson, P.F. Barker, Phys. Rev. A 78, 052707 (2008)

    Article  ADS  Google Scholar 

  12. F. Stienkemeier, K.K. Lehmann, J. Phys. B 39, R127 (2006)

    Article  ADS  Google Scholar 

  13. G. Auböck, J. Nagl, C. Callagari, W.E. Ernst, J. Phys. Chem. A 111, 7404 (2007)

    Article  Google Scholar 

  14. S. Bovino, E. Coccia, D. Lopez-Durán, E. Bodo, F.A. Gianturco, J. Chem. Phys. 130, 224903 (2009)

    Article  ADS  Google Scholar 

  15. P. Staanum, S.D. Kraft, J. Lauge, R. Wester, M. Weidemueller, Phys. Rev. Lett. 96, 023201 (2006)

    Article  ADS  Google Scholar 

  16. N. Zahzam, T. Vogt, M. Mudrich, D. Comparat, P. Pillet, Phys. Rev. Lett. 96, 023202 (2006)

    Article  ADS  Google Scholar 

  17. R. Prosmiti, G. Delgado-Barrio, P. Villareal, E. Yurtsever, E. Coccia, F.A. Gianturco, J. Phys. Chem. A 113, 14718 (2009)

    Article  Google Scholar 

  18. D. Caruso, M. Tacconi, E. Yurtsever, F.A. Gianturco, Phys. Rev. A 81, 042710 (2010)

    Article  ADS  Google Scholar 

  19. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  20. F. Xie , V.B. Sockov , A.M. Lyyra , D. Li , S. Ingram , J, Bai , V.S. Ivanov, S. Magnier, L. Li, J. Chem. Phys. 130, 051102 (2009)

    Article  ADS  Google Scholar 

  21. M. Tacconi, E. Bodo, F.A. Gianturco, Phys. Rev. A 75, 012708 (2007)

    Article  ADS  Google Scholar 

  22. R. Martinazzo, E. Bodo, F.A. Gianturco, Comput. Phys. Commun. 151, 187 (2003)

    Article  ADS  Google Scholar 

  23. D. Lopez-Durán, E. Bodo, F.A. Gianturco, Comput. Phys. Commun. 179, 821 (2008)

    Article  ADS  Google Scholar 

  24. E.P. Wigner, Phys. Rev. 73, 1002 (1948)

    Article  ADS  Google Scholar 

  25. M. Viteau, A. Chotia, M. Allegrini, N. Boulouga, O. Dulieu, D. Comparat, P. Pillet, Phys. Rev. A 79, R021402 (2009)

    Article  ADS  Google Scholar 

  26. N. Balakrishnan, R.C. Farrey, A. Dalgarno, Phys. Rev. Lett. 80, 3224 (1998)

    Article  ADS  Google Scholar 

  27. N. Balakrishnan, R.C. Forrey, A. Dalgarno, Chem. Phys. Lett. 280, 1 (1997)

    Article  ADS  Google Scholar 

  28. E. Bodo, F.A. Gianturco, E. Yurtsever, Phys. Rev. A 73, 052715 (2006)

    Article  ADS  Google Scholar 

  29. D.M. Egorov, Buffer-Gas Cooling of Diatomic Molecules, Ph.D. thesis, Harvard University, 2004

  30. L. Gonzalez-Sanchez, M. Tacconi, E. Bodo, F.A. Gianturco, Eur. Phys. J. D 49, 85 (2008)

    Article  ADS  Google Scholar 

  31. S. Bovino, E. Bodo, E. Yurtsever, F.A. Gianturco, J. Chem. Phys. 128, 224312 (2008)

    Article  ADS  Google Scholar 

  32. L. Gonzalez-Sanchez, E. Bodo, F.A. Gianturco, Phys. Rev. A 73, 022703 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Gianturco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruso, D., Tacconi, M., Yurtsever, E. et al. Quenching vibrations of cesium dimers by He at low and ultralow temperatures: quantum dynamical calculations. Eur. Phys. J. D 65, 167–175 (2011). https://doi.org/10.1140/epjd/e2011-20029-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20029-0

Keywords

Navigation