Skip to main content
Log in

Proposal for a Raman X-ray free electron laser

  • Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

A scheme for an X-ray free electron laser is proposed, based on a Raman process occurring during the interaction between a moderately relativistic bunch of free electrons, and twin intense short pulse lasers interfering to form a transverse standing wave along the electron trajectories. In the high intensity regime of the Kapitza-Dirac effect, the laser ponderomotive potential forces the electrons into a lateral oscillatory motion, resulting in a Raman scattering process. I show how a parametric process is triggered, resulting in the amplification of the Stokes component of the Raman-scattered photons. Experimental operating parameters and implementations, based both on LINAC and Laser Wakefield Acceleration techniques, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Duguay, Rentzepis, Appl. Phys. Lett. 10, 350 (1967)

    Article  ADS  Google Scholar 

  2. P. Jaeglé et al., Phys. Lett. A 36, 167 (1971)

    Article  ADS  Google Scholar 

  3. P. Jaeglé, Coherent sources of XUV radiation (Springer Verlag, Berlin, 2006)

  4. J.M.J. Madey, J. Appl. Phys. 42, 1906 (1971)

    Article  ADS  Google Scholar 

  5. D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman, T.I. Smith, Phys. Rev. Lett. 38, 892 (1977)

    Article  ADS  Google Scholar 

  6. J.B. Murphy, C. Pellegrini, J. Opt. Soc. Am. B 2, 259 (1985)

    Article  ADS  Google Scholar 

  7. C. Pellegrini, J. Stöhr, Nucl. Inst. Meth. A 500, 33 (2003)

    Article  ADS  Google Scholar 

  8. J. Arthur et al., Linac Coherent Light Source (LCLS) Conceptual Design Report, SLAC-R593 (Stanford, 2002)

  9. T. Tanaka, T. Shintake, SCSS X-FEL Conceptual Design Report (RIKEN Harima Institute, Hyogo, Japan, 2005)

  10. T. Shintake et al., Nat. Photon. 2, 297 (2006)

    Article  Google Scholar 

  11. V. Ayvazyan et al., Eur. Phys. J. D 37, 297 (2006)

    Article  ADS  Google Scholar 

  12. B.D. Patterson et al., New J. Phys. 12, 035012 (2010)

    Article  ADS  Google Scholar 

  13. P. Emma, LCLS commissioning team, Proceedings of the PAC conference (2009)

  14. P. Gibbon, Short pulse laser interactions with matter: an introduction (Imperial College Press, London, 2005)

  15. P. Sprangle, A. Ting, E. Esarey, A. Fisher, J. Appl. Phys. 72, 5032 (1992)

    Article  ADS  Google Scholar 

  16. P. Sprangle, A.T. Drobot, J. Appl. Phys. 50, 2652 (1979)

    Article  ADS  Google Scholar 

  17. P. Dobiasch, P. Meystre, M.O. Scully, IEEE J. Quantum Electron. 19, 1812 (1983)

    Article  ADS  Google Scholar 

  18. J. Gea-Banacloche, G.T. Moore, R.R. Schlicher, M.O. Scully, H. Walther, IEEE J. Quantum Electron. 23, 1558 (1987)

    Article  ADS  Google Scholar 

  19. J.C. Gallardo, R.C. Fernow, R. Palmer, C. Pellegrini, IEEE J. Quantum. Electron. 24, 1557 (1988)

    Article  ADS  Google Scholar 

  20. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The physics of free electron lasers (Springer Verlag, Berlin, 2000)

  21. A. Bacci, M. Ferrario, C. Maroli, V. Petrillo, L. Serafini, Phys. Rev. ST Accel. Beams 9, 060704 (2006)

    Article  ADS  Google Scholar 

  22. R. Bonifacio, N. Piovella, M.M. Cola, L. Volpe, NIM 577, 745 (2007)

    Article  ADS  Google Scholar 

  23. R. Bonifacio, N. Piovella, M.M. Cola, L. Volpe, A. Schiavi, G.R.M. Robb, NIM 593, 69 (2008)

    Article  ADS  Google Scholar 

  24. H.K. Avetissian, G.F. Mkrtchian, Phys. Rev. E 65, 046505 (2002)

    Article  ADS  Google Scholar 

  25. F. Grüner et al., Appl. Phys. B 86, 431 (2007)

    Article  ADS  Google Scholar 

  26. K. Nakajima, Nature Phys. 4, 92 (2008)

    Article  ADS  Google Scholar 

  27. H.-P. Schlenvoigt, K. Haupt, A. Debus, F. Budde, O. Jäckel, S. Pfotenhauer, H. Schwoerer, E. Rohwer, J.G. Gallacher, E. Brunetti, R.P. Shanks, S.M. Wiggins, D.A. Jaroszynski, Nature Phys. 4, 130 (2008)

    Article  ADS  Google Scholar 

  28. V. Petrillo, L. Serafini, P. Tomassini, Phys. Rev. ST Accel. Beams 11, 070703 (2008)

    Article  ADS  Google Scholar 

  29. P. Sprangle, B. Hafizi, J.R. Peñano, Phys. Rev. Accel. Beams 12, 050702 (2009)

    Article  ADS  Google Scholar 

  30. Ph. Zeitoun et al., Nature 431, 466 (2004)

    Article  ADS  Google Scholar 

  31. G. Lambert et al., Nature Phys. 4, 296 (2008)

    Article  Google Scholar 

  32. A. Klisnick et al., J. Opt. Soc. Am. B 17, 1093 (2000)

    Article  ADS  Google Scholar 

  33. Z. Bor, S. Szatmari, A. Müller, Appl. Phys. B 32, 101 (1983)

    Article  ADS  Google Scholar 

  34. J.-C. Chanteloup et al., J. Opt. Soc. Am. B 17, 151 (2000)

    Article  ADS  Google Scholar 

  35. S. Sebban, L. Charreyre, P. Balcou (to be published)

  36. G. Pretzler, A. Kasper, K.J. Witte, Appl. Phys. B 70, 1 (2000)

    Article  ADS  Google Scholar 

  37. P.L. Kapitza, P.A.M. Dirac, Proc. Cambridge Philos. Soc. 29, 297 (1933)

    Article  Google Scholar 

  38. D.L. Freimund, K. Aflatooni, H. Batelaan, Nature 413, 142 (2001)

    Article  ADS  Google Scholar 

  39. T.W.B. Kibble, Phys. Rev. 150, 1060 (1968)

    Article  ADS  Google Scholar 

  40. P.H. Bucksbaum, D.W. Schumacher, M. Bashkansky, Phys. Rev. Lett. 61, 1182 (1988)

    Article  ADS  Google Scholar 

  41. M.V. Fedorov, K.B. Oganesyan, A.M. Prokhorov, App. Phys. Lett. 53, 353 (1988)

    Article  ADS  Google Scholar 

  42. M.V. Fedorov, S.P. Goreslavsky, V.S. Letokhov, Phys. Rev. E 55, 1015 (1997)

    Article  ADS  Google Scholar 

  43. S. Sepke, Y.Y. Lau, J.P. Holloway, D. Umstadter, Phys. Rev. E 72, 026501 (2005)

    Article  ADS  Google Scholar 

  44. T. Shiozawa, Classical Relativistic Electrodynamics (Springer Verlag, Berlin, 2004), pp. 199-208

  45. J.J. Thomson, J.A. Karush, Phys. Fluids 17, 1608 (1974)

    Article  ADS  Google Scholar 

  46. G. Laval, R. Pellat, D. Pesme, Phys. Rev. Lett. 36, 192 (1976)

    Article  ADS  Google Scholar 

  47. W.L. Kruer, The physics of laser plasma interactions (Addison-Wesley, 1988)

  48. J.B. Rosenzweig et al., NIM 593, 39 (2008)

    Article  ADS  Google Scholar 

  49. X. Davoine et al., Phys. Rev. Lett. 102, 065001 (2009)

    Article  ADS  Google Scholar 

  50. C. Rechatin et al., Phys. Rev. Lett. 102, 164801 (2009)

    Article  ADS  Google Scholar 

  51. J.B. Rosenzweig et al., NIM 557, 87 (2006)

    Article  ADS  Google Scholar 

  52. D. Alesini et al., NIM 528, 586 (2004)

    Article  ADS  Google Scholar 

  53. M. Ferrario et al., Phys. Rev. Lett. 99, 234801 (2007)

    Article  ADS  Google Scholar 

  54. C. Hernandez-Gomez et al., J. Phys. IV France 133, 555 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Balcou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balcou, P. Proposal for a Raman X-ray free electron laser. Eur. Phys. J. D 59, 525–537 (2010). https://doi.org/10.1140/epjd/e2010-00185-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00185-5

Keywords

Navigation