Skip to main content
Log in

Towards optical spectroscopy of the element nobelium (\({\sf Z }= \mathsf{102}\)) in a buffer gas cell

First on-line experiments on 155Yb at the velocity filter SHIP with a novel ion collection and atom re-evaporation method of high efficiency

  • Atomic and Ionic Level Structure
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

For the investigation of the atomic level structure of heavy elements which can only be produced at on-line facilities such as GSI, a novel experimental procedure has been developed. It is based on Radiation Detected Resonance Ionization Spectroscopy (RADRIS) and can be applied to elements like nobelium produced at rates of a few ions per second. Fusion reaction products are separated from the primary beam by the velocity filter SHIP at GSI, stopped in a buffer gas cell, collected on a tantalum filament and then re-evaporated as atoms. The ions produced by resonance ionization with tunable laser beams are detected via their characteristic α decay. First on-line experiments on α-active 155Yb, which is supposed to have an atomic level structure similar to nobelium, were performed. These test experiments focused on the optimization of the collection and re-evaporation process of the radioactive ions, the laser ionization efficiency and the detection via α decay. An overall efficiency for RADRIS of 0.8% with respect to the target production rate was measured. While further improvements of this efficiency are in progress it should already be sufficient for the search for atomic levels in nobelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Schädel, Angewandte Chemie-International Edition 45, 368 (2006)

    Article  Google Scholar 

  • A. Türler, Eur. Phys. J. A 15, 271 (2002)

    Article  ADS  Google Scholar 

  • H.W. Gäggeler, Eur. Phys. J. A 25, 583 (2005), Suppl. 1

    Article  ADS  Google Scholar 

  • R. Eichler et al., Radiochimica Acta 94, 181 (2006)

    Article  Google Scholar 

  • C.E. Düllmann et al., Nature 418, 859 (2002)

    Article  ADS  Google Scholar 

  • H.W. Gäggeler, Confirmation of the decay of $^{283}112$$ and evidence for a behaviour of element 112 as a volatile metal, in Workshop on the Atomic Properties of the Heaviest Elements (2006), http://www.ha.physik.uni-muenchen. de/heaviest_atoms/

  • V.G. Pershina, Chem. Rev. 96, 1977 (1996)

    Article  Google Scholar 

  • B. Fricke, E. Johnson, G. Rivera, Spectrochimica Acta 62, 17 (1993)

    Google Scholar 

  • W.C. Martin, J. Sugar, Phys. Rev. A 53, 1911 (1996)

    Article  ADS  Google Scholar 

  • E. Eliav, U. Kaldor, Y. Ishikawa, Phys. Rev. Lett. 74, 1079 (1995)

    Article  ADS  Google Scholar 

  • W. Lauth, H. Backe, M. Dahlinger, I. Klaft, P. Schwamb, G. Schwickert, N. Trautmann, U. Othmer, Phys. Rev. Lett. 68, 1675 (1992)

    Article  ADS  Google Scholar 

  • H. Backe et al., Phys. Rev. Lett. 80, 920 (1998)

    Article  ADS  Google Scholar 

  • H. Backe, A. Dretzke, M. Hies, G. Kube, H. Kunz, W. Lauth, M. Sewtz, N. Trautmann, R. Repnow, H.J. Maier, Hyperfine Interact. 127, 35 (2000)

    Article  ADS  Google Scholar 

  • M. Sewtz et al., Phys. Rev. Lett. 90, 163002 (2003)

    Article  ADS  Google Scholar 

  • H. Backe et al., Nucl. Instrum. Meth. Phys. Res. B 126, 406 (1997)

    Article  Google Scholar 

  • H. Backe, A. Dretzke, S. Fritzsche, R.G. Haire, P. Kunz, W. Lauth, M. Sewtz, N. Trautmann, Hyperfine Interact. 162, 3 (2005)

    Article  ADS  Google Scholar 

  • M. Leino et al., Eur. Phys. J. A 6, 63 (1999)

    ADS  Google Scholar 

  • H. Backe, W. Lauth, W. Achenbach, M. Hain, A. Scherer, A. Steinhof, S. Tölg, S. Ziegler, Nucl. Instrum. Meth. Phys. Res. B 70, 521 (1992)

    Article  ADS  Google Scholar 

  • W. Reisdorf, Z. Phys. A 300, 227 (1981)

    Article  Google Scholar 

  • B. Eichler, S. Hübener, N. Erdmann, K. Eberhard, H. Funk, G. Hermann, S. Köhler, N. Trautmann, G. Passler, F. Urban, Radiochim. Acta 79, 221 (1997)

    Google Scholar 

  • M. Sewtz et al., Spectrochim. Acta B 58, 1077 (2003)

    Article  ADS  Google Scholar 

  • K. Rajnak, B. Shore, J. Opt. Soc. Am. 68, 360 (1978)

    Article  ADS  Google Scholar 

  • J. Sugar, J. Chem. Phys. 60, 4103 (1974)

    Article  ADS  Google Scholar 

  • N. Erdmann et al., J. Alloys Comp. 271, 837 (1998)

    Article  Google Scholar 

  • S. Fritzsche, Eur. Phys. J. D 33, 15 (2005)

    Article  ADS  Google Scholar 

  • A. Borschevsky, E. Eliav, M. Vilkas, Y. Ishikawa, U. Kaldor, Transition energies of Yb, Lu, No, and Lr by the intermediate Hamiltonian coupled cluster method, in Workshop on the Atomic Properties of the Heaviest Elements (2006), http://www.ha.physik.uni-muenchen. de/heaviest_atoms/

  • U. Kaldor, private communication, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kunz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backe, H., Kunz, P., Lauth, W. et al. Towards optical spectroscopy of the element nobelium (\({\sf Z }= \mathsf{102}\)) in a buffer gas cell . Eur. Phys. J. D 45, 99–106 (2007). https://doi.org/10.1140/epjd/e2007-00198-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00198-1

PACS.

Navigation