Skip to main content

Particle accelerator physics and technology for high energy density physics research

Abstract.

Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astroparticle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology.

This is a preview of subscription content, access via your institution.

References

  1. K. Zioutas et al., Science 306, 1485 (2004)

    Article  Google Scholar 

  2. A. Golubev et al., Phys. Rev. E 57, 3363 (1998)

    Article  ADS  Google Scholar 

  3. D.H.H. Hoffmann et al., Phys. Plasmas 9, 3651 (2002)

    Article  ADS  Google Scholar 

  4. D. Varentsov et al., Europhys. Lett. 64, 57 (2003)

    Article  ADS  Google Scholar 

  5. K. Weyrich et al., Nucl. Instr. Meth. A 278, 52 (1989)

    Article  ADS  Google Scholar 

  6. D.H.H. Hoffmann et al., Phys. Rev. A 42, 2313 (1990)

    Article  ADS  Google Scholar 

  7. J. Jacoby et al., Phys. Rev. Lett. 74, 1550 (1995)

    Article  ADS  Google Scholar 

  8. V. Mintsev et al., Nucl. Instr. Meth. A 415, 715 (1998)

    Article  Google Scholar 

  9. M. Roth et al., Europhys. Lett. 50, 28 (2000)

    Article  ADS  Google Scholar 

  10. M. Ogawa et al., Nucl. Instr. Meth. A 464, 72 (2001)

    Article  Google Scholar 

  11. U. Amaldi, G. Kraft, Rep. Prog. Phys. 68, 1861 (2005)

    Article  ADS  Google Scholar 

  12. D.H.H. Hoffmann et al., Laser Part. Beams 23, 47 (2005)

    Article  ADS  Google Scholar 

  13. W.F. Henning, Nucl. Instr. Meth. A 204, 725 (2003)

    Article  ADS  Google Scholar 

  14. G. Schaumann et al., Laser Part. Beams 23, 503 (2005)

    Article  ADS  Google Scholar 

  15. P. Neumayer et al., Laser Part. Beams 23, 385 (2005)

    Article  ADS  Google Scholar 

  16. P. Mulser, M. Kanapathipillai, D.H.H. Hoffmann, Phys. Rev. Lett. 95, 103401 (2005); M. Kanapathipillai, Laser Part. Beams 24, 9 (2006)

    Article  ADS  Google Scholar 

  17. Y. Satov, B. Sharkov, H. Haseroth, J. Russ. Laser Res. 25, 205 (2004)

    Article  Google Scholar 

  18. L.Laska et al., Laser Part. Beams 24, 175 (2006)

    Google Scholar 

  19. M.S. Rafique, Khaleeq-UR-Rahman, M.S. Anwar, Laser Part. Beams 23, 131 (2005)

    ADS  Article  Google Scholar 

  20. M. Roth et al., Laser Part. Beams 23, 95 (2005)

    Article  ADS  Google Scholar 

  21. E. Breschi et al., Laser Part. Beams 22, 393 (2004)

    Article  ADS  Google Scholar 

  22. V. Malka, S. Fritzler, Laser Part. Beams 22, 339 (2004)

    Article  Google Scholar 

  23. D. Gericke, M. Schlanges, Phys. Rev. E 65, 36406 (2002)

    Article  ADS  Google Scholar 

  24. G. Zwicknagel et al., Phys. Rep. 309, 904 (1999)

    Google Scholar 

  25. N.A. Tahir et al., Phys. Plasmas 7, 4379 (2000)

    Article  ADS  Google Scholar 

  26. N.A. Tahir et al., J. Phys. A: Math. Gen. 36, 6129 (2003)

    Article  ADS  Google Scholar 

  27. N.A. Tahir et al., Phys. Rev. Lett. 95, 035001 (2005)

    Article  ADS  Google Scholar 

  28. V.E. Fortov et al., Nucl. Sci. Eng. 123, 169 (1996)

    Google Scholar 

  29. N.A. Tahir et al., Contrib. Plasma Phys. 45, 229 (2005)

    Article  Google Scholar 

  30. V.K. Gryaznov et al., Thermophysical Properties of Working Media of Gas – Phase Nuclear Reactor, edited by V.M. Ievlev (Atomizdat, Moscow, 1980)

  31. W. Ebeling et al., Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart - Leipzig 1991)

  32. V.K. Gryaznov et al., Zh. Exp. Teor. Fiz. 114, 1242 (1998)

    Google Scholar 

  33. N.A. Tahir et al., Phys. Rev. E 63, 016402 (2001)

    ADS  Google Scholar 

  34. N.A. Tahir et al., Phys. Rev. E 63, 036497 (2001)

    Google Scholar 

  35. N.A. Tahir et al., Phys. Rev. E 62, 1224 (2000)

    Article  ADS  Google Scholar 

  36. N.A. Tahir et al., Laser Part. Beams 22, 485 (2004)

    Article  ADS  Google Scholar 

  37. C. Constantin et al., Laser Part. Beams 22, 59 (2004)

    ADS  Google Scholar 

  38. N.A. Tahir et al., Nucl. Instr. Meth. A 544, 16 (2005)

    Article  ADS  Google Scholar 

  39. S. Neff et al., Laser Part. Beams 24, 71 (2006)

    Google Scholar 

  40. U. Neuner et al., Phys. Rev. Lett. 85, 4518 (2000)

    Article  ADS  Google Scholar 

  41. M. Temporal et al., Laser Part. Beams 23, 137 (2005)

    ADS  Google Scholar 

  42. A.V. Bushman, V.E. Fortov, Sov. Tech. Rev. B. Therm. Phys. 1, 219 (1987)

    Google Scholar 

  43. A. Fasso et al., e-print arXiv:hep-ph/0306267

  44. N.A. Tahir et al., Phys. Rev. Lett. 94, 135004 (2005)

    Article  ADS  Google Scholar 

  45. N.A. Tahir et al., J. Appl. Phys. 97, 083532 (2005)

    Article  ADS  Google Scholar 

  46. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  47. K. Zioutas et al., Phys. Rev. Lett. 94, 121301 (2005)

    Article  ADS  Google Scholar 

  48. D. Koshkarev, B.Yu. Sharkov, N. Alexeev, JETP Lett. 77, 149 (2003)

    Google Scholar 

  49. H. Hora, Laser Part. Beams 22, 439 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. H.H. Hoffmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoffmann, D., Blazevic, A., Rosmej, O. et al. Particle accelerator physics and technology for high energy density physics research . Eur. Phys. J. D 44, 293–300 (2007). https://doi.org/10.1140/epjd/e2006-00125-0

Download citation

PACS.

  • 51.30.+i Thermodynamic properties, equations of state
  • 52.20.-j Elementary processes in plasmas
  • 52.25.Fi Transport properties
  • 52.57.-z Laser inertial confinement