Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 271))

  • 529 Accesses

Abstract

The recent evolution to combine high-intensity X-ray Free Electron Lasers XFEL’s with high-energy high-intensity optical lasers provides the scientific community with outstanding tools to study matter and radiation under extreme conditions never achieved in laboratories so far. Atomic physics in dense plasmas and X-ray spectroscopy are the key elements for novel studies beyond the current state-of-the art. The self-seeded mode of XFEL’s will enable for the first time to combine efficient pumping of atomic states in dense plasmas while resolving the frequency dependence of X-ray absorption and emission line profiles. The perspectives for novel fundamental studies in atomic density matrix theory are discussed. Finally, a new role of atomic physics processes is explored in XFEL-solid matter interaction: Auger electron heating and three-body recombination heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Chen, Plasma Physics and Controlled Fusion, 2nd edn. (Plenum Press, New York and London, 1984)

    Google Scholar 

  2. S. Ichmaru, Statistical Plasmas Physics: Condensed Plasmas (Westview Press, Oxford, 2004)

    Google Scholar 

  3. W.-D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag, Berlin, 1986)

    Book  Google Scholar 

  4. R. Drake, High-Energy-Density Physics (Springer, Berlin, 2006)

    Book  Google Scholar 

  5. R. Cheng, Y. Lei, X. Zhou, Y. Wang, Y. Chen, Y. Zhao, J. Ren, L. Sheng, J. Yang, Z. Zhang et al., Warm dense matter research at HIAF. Matt. Radiat. Extremes 3, 85 (2018)

    Article  Google Scholar 

  6. B. Deschaud, O. Peyrusse F.B. Rosmej, Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects. Phys. Plasmas 27, 063303 (2020)

    Google Scholar 

  7. F. Dorchies, F. Festa, V. Recoules, O. Peyrusse, A. Benuzzi-Munaix, E. Brambrink, A. Levy, A. Ravasio, M. Koenig, T. Hall, S. Mazevet, X-ray absorption K-edge as a diagnostic of the electronic temperature in warm dense aluminum. Phys. Rev. B 92, 085117 (2015)

    Google Scholar 

  8. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey, Frontiers and Challenges in Warm Dense Matter, vol. 96 (Springer Science & Business, 2014)

    Google Scholar 

  9. M. Harmand, A. Ravasio, S. Mazevet, J. Bouchet, A. Denoeud, F. Dorchies, Y. Feng, C. Fourment, E. Galtier, J. Gaudin, F. Guyot, R. Kodama, M. Koenig, H. Lee, K. Miyanishi, G. Morard, R. Musella, B. Nagler, M. Nakatsutsumi, N. Ozaki, V. Recoules, S. Toleikis, T. Vinci, U. Zastrau, D. Zhu, A. Benuzzi-Mounaix, X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments. Phys. Rev. B 92, 024108 (2015)

    Google Scholar 

  10. X. Li, F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, An analytical plasma screening potential based on the self-consistent-field ion-sphere model. Phys. Plasmas 26, 033301 (2019)

    Google Scholar 

  11. X. Li, F.B. Rosmej, Analytical approach to level delocalization and line shifts in finite temperature dense plasmas. Phys. Lett. A 384, 126478 (2020)

    Google Scholar 

  12. F.B. Rosmej, K. Bennadji , V.S. Lisitsa, Dense plasmas effects on exchange energy shifts in highly charged ions: an alternative approach for arbitrary perturbation potentials. Phys. Rev. A 84, 032512 (2011)

    Google Scholar 

  13. F.B. Rosmej, B. Deschaud, K. Bennadji, P. Indelicato, J.P. Marquès, Study of electric dipole matrix elements of He-like ions for X-ray line shape calculations. Phys. Rev. A 87, 022515 (2013)

    Google Scholar 

  14. F.B. Rosmej (principal investigator), S.H. Glenzer, F. Condamine, E. Galtier, O. Renner, D. Khaghani, Solving Solar Opacity Problems. LCLS beam time proposal LR21 (2018)

    Google Scholar 

  15. S. Zhang, S. Zhao, W. Kang, P. Zhang, X.-T. He, Link between K absorption edges and thermodynamic properties of warm dense plasmas established by an imporved first-principles method. Phys. Rev. B 93, 115114 (2016)

    Google Scholar 

  16. E. Galtier, A. Moinard, F. Khattak, O. Renner, T. Robert, J.J. Santos, C. Beaucourt, P. Angelo, V. Tikhonchuk, F.B. Rosmej, High resolution X-ray imaging of K-alpha volume radiation induced by high intensity laser pulse interaction with a copper target. J. Phys. B: At. Mol. Opt. Phys. 45, 205701 (2012)

    Google Scholar 

  17. S.H. Glenzer, F.B. Rosmej, R.W. Lee, C.A. Back, K.G. Estabrook, B.J. MacCowan, T.D. Shepard, R.E. Turner, Measurements of suprathermal electrons in hohlraum plasmas with X-ray spectroscopy. Phys. Rev. Lett. 81, 365 (1998)

    Article  ADS  Google Scholar 

  18. O. Renner, M. Smid, D. Batani, L. Antonelli, Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Controlled Fusion 58, 075007 (2016)

    Google Scholar 

  19. O. Renner, F.B. Rosmej, Challenges of X-ray spectroscopy in investigations of matter under extreme conditions. Matt. Radiat. Extremes (Rev.) 4, 024201 (2019)

    Google Scholar 

  20. F.B. Rosmej, Hot electron X-ray diagnostics. Lett. J. Phys. B: At. Mol. Opt. Phys. 30, L819 (1997)

    Article  ADS  Google Scholar 

  21. M. Smid, O. Renner, A. Colaitis, V. Tikhonchuk, T. Schlegel, F. Rosmej, Characterization of suprathermal electrons inside laser accelerated solid density matter via axially-resolved K-alpha emission. Nat. Commun. 10, 4212 (2019)

    Article  ADS  Google Scholar 

  22. Y. Kida, R. Kinjo, T. Tanaka, Synthesizing high order harmonics to generate a sub-cycle pulse in free electron lasers. Appl. Phys. Lett. 109, 151107 (2016)

    Google Scholar 

  23. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, Effects of ultrashort laser pulse durations on Fano resonances in atomic spectra. Phys. Rev. A 90, 043421 (2014)

    Google Scholar 

  24. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, Scaling laws for ionization of atomic states by ultra-short electromagnetic pulses. J. Phys. B: At. Mol. Opt. Phys. 49, 025602 (2016)

    Google Scholar 

  25. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, XUV and X-ray elastic scattering of attosecond electromagnetic pulses on atoms. J. Phys. B: At. Mol. Opt. Phys. 50, 235601 (2017)

    Google Scholar 

  26. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, N.N. Moroz, Non-linear resonance scattering of femtosecond X-ray pulses on atoms in plasmas. Phys. Lett. A 381, 3576 (2017)

    Article  ADS  Google Scholar 

  27. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, X. Li, E. Khramov, Scattering of ultrashort laser pulses on ion-sphere in dense plasmas. Contrib. Plasma Phys. 59, 189 (2019). https://doi.org/10.1002/ctpp.201800062

    Article  ADS  Google Scholar 

  28. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, Plasma Atomic Physics (Springer, Berlin, 2021)

    Google Scholar 

  29. Rosmej FB, Astapenko VA, Lisitsa VS, Vainshtein LA (2020b) Dielectronic recombination in non-LTE plasmas. Matter and Radiation at Extremes, submitted

    Google Scholar 

  30. LSLS (2021). https://lcls.slac.stanford.edu

  31. EU-XFEL 2021. https://www.xfel.eu/

  32. SACLA, 2021. http://xfel.riken.jp/eng/

  33. E. Galtier, F.B. Rosmej, D. Riley et al., Decay of crystaline order and equilibration during solid-to-plasma transition induced by 20-fs microfocused 92 eV Free Electron Laser Pulses. Phys. Rev. Lett. 106, 164801 (2011)

    Google Scholar 

  34. F.B. Rosmej, R.W. Lee, Hollow ion emission driven by pulsed x-ray radiation fields. Europhys. Lett. 77, 24001 (2007)

    Article  ADS  Google Scholar 

  35. F.B. Rosmej, R.W. Lee, D.H.G. Schneider, Fast x-ray emission switches driven by intense x-ray free electron laser radiation. High Energy Density Phys. 3, 218 (2007)

    Article  ADS  Google Scholar 

  36. F.B. Rosmej, Ionization potential depression in an atomic-solid-plasma picture. Lett. J. Phys. B: At. Mol. Opt. Phys. 51, 09LT01 (2018)

    Google Scholar 

  37. F.B. Rosmej, X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas, in Highly Charged Ion Spectroscopic Research ed. by Y. Zou, R. Hutton (Taylor and Francis, 2012), pp. 267–341. ISBN: 9781420079043. http://www.crcnetbase.com/isbn/9781420079050

  38. F.B. Rosmej, Exotic states of high density matter driven by intense XUV/X-ray free electron lasers, “Free Electron Laser”. In: Varró S (eds) InTech (2012). ISBN 978–953–51–0279–3. The download from the webside is free of charge: https://www.intechopen.com/books/free-electron-lasers/exotic-states-of-high-density-matter-driven-by-intense-xuv-x-ray-free-electron-lasers

  39. F.B. Rosmej, R. Dachicourt, B. Deschaud, D. Khaghani, M. Dozières, M. Smîd, O. Renner, Exotic X-ray emission from dense plasmas. J. Phys. B: Rev. Spec. Top. 48, 224005 (2015). Available online http://iopscience.iop.org/article/. https://doi.org/10.1088/0953-4075/48/22/224005

  40. V.A. Boiko, V.A. Vinogradov, S.A. Pikuz, I.Y. Skobelev, A.Y. Faenov, X-ray spectroscopy of laser produced plasmas. J. Sov. Laser Res. 6, 82 (1985)

    Google Scholar 

  41. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, New York, 1997)

    Book  Google Scholar 

  42. H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, Berlin, 2009)

    Book  Google Scholar 

  43. C. de Michelis, M. Mattioli, Soft X-ray spectroscopic diagnostics of laboratory plasmas. Nucl. Fusion 21, 677 (1981)

    Article  ADS  Google Scholar 

  44. H. Mimura, H. Yumoto, S. Matsuyama, T. Koyama, K. Tono, Y. Inubushi, T. Togashi, T. Sato, J. Kim, R. Fukui, Y. Sano, M. Yabashi, H. Ohashi, T. Ishikawa, K. Yamauchi, Generation of 1020 Wcm-2 hard X-ray laser pulses with two-stage reflective focusing system. Nat. Commun. 5, 3539 (2014)

    Article  ADS  Google Scholar 

  45. B. Deschaud, O. Peyrusse, F.B. Rosmej, Generalized atomic physics processes when intense femtosecond XUV- and X-ray radiation is interacting with solids. Europhys. Lett. 108, 53001 (2014)

    Article  ADS  Google Scholar 

  46. B. Deschaud, O. Peyrusse, F.B. Rosmej, Atomic kinetics for isochoric heating of solid aluminum under short intense XUV free electron laser irradiation. HEDP 15, 22 (2015)

    ADS  Google Scholar 

  47. R.D. Cowan, The theory of atomic structure and spectra (University of California Press, 1981)

    Google Scholar 

  48. I.I. Sobelman, L.A. Vainshtein, Excitation of atomic spectra (Alpha Sci. 2006, ISBN 978-1842652336)

    Google Scholar 

  49. J. Aman et al., Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 6, 693 (2012)

    Article  ADS  Google Scholar 

  50. G. Geloniet al., A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt. 58, 1391 (2011). https://doi.org/10.1080/09500340.2011.586473

  51. S. Serkez, Soft X-ray self-seeding simulation methods and their application for LCLS, in Proceedings of FEL2014, Basel, Switzerland, MOO090 (2014). ISBN 978-3-95450-133-5

    Google Scholar 

  52. F.P. Condamine, D. Khaghani, E. Glatier, L. Gournay, O. Renner, E. Cunningham, G. Dyer, M. Greenberg, B. Nagler, H.-J. Lee, S.H. Glenzer, F.B. Rosmej, Self-seeded X-ray laser resonant pumping of highly charged ions in hot dense plasma, in preparation (2020)

    Google Scholar 

  53. A.N. Anufrienko, A.L. Godunov, A.V. Demura, Yu.K. Zemtsov, V.S. Lisitsa, A.N. Starostin, M.D. Taran, V.A. Shchipakov, Nonlinear interference effects in Stark broadening of ion lines in a dense plasma. Sov. Phys. JETP 71, 728 (1990)

    ADS  Google Scholar 

  54. A.N. Anufrienko, A.E. Bulyshev, A.L. Godunov, A.V. Demura, Yu.K. Zemtsov, V.S. Lisitsa, A.N. Starostin, Nonlinear interference effects and ion dynamics in the kinetic theory of Stark broadening of the spectral lines of multicharged ions in a dense plasma. Sov. Phys. JETP 76, 219 (1993)

    ADS  Google Scholar 

  55. V.S. Lisitsa, Atoms in Plasmas (Springer, New York, 1994)

    Book  Google Scholar 

  56. S.G. Rautian, A.M. Shalagin, Kinetic Problems of Non-linear Spectroscopy (North-Holland, 1991)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Cooperation Agreement between the University Pierre and Marie Curie, Sorbonne Universities, and the Moscow Institute of Physics and Technology. This work has also been supported by the Competitiveness Program of NRNU MEPhI in the framework of the “Russian Academic Excellence Project” and “Prioritet 2030”. Financial support from MIPT, Grant No. 075–02-2019–967 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. B. Rosmej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosmej, F.B. (2022). X-ray Free Electron Lasers and Atomic Physics in Dense Plasmas. In: Singh, V., Sharma, R., Mohan, M., Mehata, M.S., Razdan, A.K. (eds) Proceedings of the International Conference on Atomic, Molecular, Optical & Nano Physics with Applications. Springer Proceedings in Physics, vol 271. Springer, Singapore. https://doi.org/10.1007/978-981-16-7691-8_1

Download citation

Publish with us

Policies and ethics