Skip to main content
Log in

Conformational changes in glycine tri- and hexapeptide

  • Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

We have investigated the potential energy surfaces for glycine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles ϕ and ψ, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of the characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable correspondence of the most prominent minima on the calculated potential energy surfaces to the experimentally measured angles ϕ and ψ for the glycine chains appearing in native proteins. We have also investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Karas, F. Hillenkamp, Anal. Chem. 60, 2299 (1988)

    Article  Google Scholar 

  • F. Hillenkamp, M. Karas, Int. J. Mass Spect. 200, 71 (2000)

    Article  Google Scholar 

  • M. Karas, U. Bahr, I. Fournier, M. Gluckmann, A. Pfenninger, J. Mass Spect. 226, 239 (2003)

    ADS  Google Scholar 

  • M. Wind, W. Lehmann, J. Anal. At. Spect. 19, 20 (2004)

    Article  Google Scholar 

  • J. Fenn, M. Mann, C. Meng, S. Wong, C. Whitehouse, Science 246, 64 (1989)

    ADS  Google Scholar 

  • S. Bröndsted-Nielsen, J. Andersen, P. Hvelplund, B. Liu, S. Tomita, J. Phys. B: At. Mol. Opt. Phys. 37, R25 (2004)

  • A. Finkelstein, O. Ptizin, Physics of Proteins (Moscow University Press “Universitet”, 2002)

  • A. Mülberg, Protein Folding (St. Petersburg University Press, 2004)

  • H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, P. Bourne, Nucleic Acids Research 28, 235 (2000)

    Article  Google Scholar 

  • A. Rubin, Biophysics: Theoretical Biophysics (Moscow University Press “Nauka”, 2004)

  • T. Head-Gordon, M. Head-Gordon, M. Frisch, C.B. III, J. Pople, J. Am. Chem. Soc. 113, 5989 (1991)

    Article  Google Scholar 

  • I. Gould, W. Cornell, I. Hillier, J. Am. Chem. Soc. 116, 9250 (1994)

    Article  Google Scholar 

  • Z. Wang, Y. Duan, J. Comp. Chem. 25, 1699 (2004)

    Article  Google Scholar 

  • A. Percel, O. Farkas, I. Jákli, I. Topol, I. Csizmadia, J. Comp. Chem. 24, 1026 (2003)

    Article  ADS  Google Scholar 

  • I. Húdaky, P. Húdaky, A. Percel, J. Comp. Chem. 25, 1522 (2004)

    Article  Google Scholar 

  • R. Improta, V. Barone, J. Comp. Chem. 25, 1333 (2004)

    Article  Google Scholar 

  • R. Vargas, J. Garza, B. Hay, D. Dixon, J. Phys. Chem. A 106, 3213 (2002)

    Article  Google Scholar 

  • R. Kashner, D. Hohl, J. Phys. Chem. A 102, 5111 (1998)

    Article  Google Scholar 

  • D. Wei, H. Guo, D. Salahub, Phys. Rev. E 64, 011907 (2001)

    Article  ADS  Google Scholar 

  • O. Bludsky, J. Chocholoušová, J. Vacek, F. Huisken, P. Hobza, J. Chem. Phys. 113, 4629 (2000)

    Article  ADS  Google Scholar 

  • S. Woutersen, Y. Mu, G. Stock, P. Hamm, Chem. Phys. 266, 137 (2001)

    Article  Google Scholar 

  • S. Woutersen, R. Pfister, Y. Mu, D. Kosov, G. Stock, J. Chem. Phys. 117, 6833 (2002)

    Article  Google Scholar 

  • Y. Mu, G. Stock, J. Phys. Chem. B. 106, 5294 (2002)

    Article  Google Scholar 

  • Y. Mu, D. Kosov, G. Stock, J. Phys. Chem. B 107, 5064 (2003)

    Article  Google Scholar 

  • P. Nguyen, G. Stock, J. Chem. Phys. 119, 11350 (2003)

    Article  ADS  Google Scholar 

  • H. Torii, M. Tasumi, J. Ram. Spect. 29, 81 (1998)

    Article  Google Scholar 

  • R. Schweitzer-Stenner, F. Eker, Q. Huang, K. Griebenow, J. Am. Chem. Soc. 123, 9628 (2001)

    Article  Google Scholar 

  • Y. Levy, O. Becker, J. Chem. Phys. 114, 993 (2001)

    Article  ADS  Google Scholar 

  • Z. Shi, C. Olson, G. Rose, R. Baldwin, N. Kallenbach, PNAS 99, 9190 (2002)

    Article  ADS  Google Scholar 

  • A. Garcia, Polymer 45, 669 (2004)

    Article  Google Scholar 

  • A. Yakubovitch, I. Solov'yov, A. Solov'yov, W. Greiner, arXiv:physics/0511026, Eur. Phys. J. D (accepted, 2006)

  • A. Yakubovitch, I. Solov'yov, A. Solov'yov, W. Greiner, arXiv:physics/0511036, Phys. Rev. E (accepted, 2006)

  • Atomic Clusters and Nanoparticles, NATO Advanced Study Institute, les Houches Session LXXIII, les Houches, 2000, edited by C. Guet, P. Hobza, F. Spiegelman, F. David (EDP Sciences and Springer Verlag, Berlin, 2001)

  • Latest Advances in Atomic Cluster Collisions Fission, Fusion, Electron, Ion and Photon Impact, edited by A. Solov'yov, J.P. Connerade (World Scientific Press, 2004)

  • L. Lindgren, J. Morrison, Atomic Many-Body Theory (Springer-Verlag, New York, Heidelberg, Berlin, 1986)

  • P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

  • A. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  • C. Lee, W. Yang, R. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  • R. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, New York, 1989)

  • S. Grimme, J. Comput. Chem. 25, 1463 (2004)

    Article  Google Scholar 

  • M. Freindorf, J. Gao, J. Comp. Chem. 17, 386 (1996)

    Article  Google Scholar 

  • M. Freindorf, Y. Shao, Th.R. Furlani, J. Kong, J. Comp. Chem. 26, 1270 (2005)

    Article  Google Scholar 

  • A. Bax, Prot. Sci. 12, 1 (2003)

    Article  Google Scholar 

  • S. Sheik, P. Sundararajan, A. Hussain, K. Sekar, Bioinformatics 18, 1548 (2002)

    Article  Google Scholar 

  • D. Voet, J. Voet, Biochemistry (John Willey and Sons, Inc., USA, 2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Solov'yov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakubovich, A., Solov'yov, I., Solov'yov, A. et al. Conformational changes in glycine tri- and hexapeptide. Eur. Phys. J. D 39, 23–34 (2006). https://doi.org/10.1140/epjd/e2006-00067-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00067-5

PACS.

Navigation