Skip to main content
Log in

The \(\eta^\prime g^* g^{(*)}\) vertex including the \(\eta^\prime\)-meson mass

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

The \(\eta^\prime g^* g^{(*)}\) effective vertex function is calculated in the QCD hard-scattering approach, taking into account the \(\eta^\prime\)-meson mass. We work in the approximation in which only one non-leading Gegenbauer moment for both the quark-antiquark and the gluonic light-cone distribution amplitudes for the \(\eta^\prime\)-meson is kept. The vertex function with one off-shell gluon is shown to have the form (valid for \(\vert q_1^2 \vert > m_{\eta^\prime}^2\)) \(F_{\eta^\prime g^* g} (q_1^2, 0, m_{\eta^\prime}^2) = m_{\eta^\prime}^2 H(q_1^2)/(q_1^2 - m_{\eta^\prime}^2)\), where H(q 1 2) is a slowly varying function, derived analytically in this paper. The resulting vertex function is in agreement with the phenomenologically inferred form of this vertex obtained from an analysis of the CLEO data on the \(\eta^\prime\)-meson energy spectrum in the decay \(\Upsilon(1S) \to \eta^\prime X\). We also present an interpolating formula for the vertex function \(F_{\eta^\prime g^* g} (q_1^2, 0, m_{\eta^\prime}^2)\) for the space-like region of the virtuality q 1 2, which satisfies the QCD anomaly normalization for on-shell gluons and the perturbative QCD result for the gluon virtuality \(\vert q_1^2\vert \gtrsim 2\) GeV2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Muta, M.Z. Yang, Phys. Rev. D 61, 054007 (2000) [hep-ph/9909484]

    Article  Google Scholar 

  2. A. Ali, A.Y. Parkhomenko, Phys. Rev. D 65, 074020 (2002) [hep-ph/0012212]

    Article  Google Scholar 

  3. P. Kroll, K. Passek-Kumericki, Phys. Rev. D 67, 054017 (2003) [hep-ph/0210045]

    Article  Google Scholar 

  4. S.S. Agaev, N.G. Stefanis, hep-ph/0212318

  5. A.L. Kagan, A.A. Petrov, hep-ph/9707354

  6. D. Atwood, A. Soni, Phys. Lett. B 405, 150 (1997) [hep-ph/9704357]

    Article  Google Scholar 

  7. A.L. Kagan, AIP Conference Proceedings 618, 310 (2002) [hep-ph/0201313]

    Article  Google Scholar 

  8. M. Artuso [CLEO Collaboration], Phys. Rev. D 67, 052003 (2003) [hep-ex/0211029]

    Google Scholar 

  9. A. Ali, A.Y. Parkhomenko, Eur. Phys. J. C (2003) Online First, DOI: 10.1140/epjc/s2003-01260-y [hep-ph/0304278]

  10. P. Ball, JHEP 9901, 010 (1999) [hep-ph/9812375]

    Google Scholar 

  11. V.M. Braun, I.E. Halperin, Z. Phys. C 44, 157 (1989) [Sov. J. Nucl. Phys. 50, 511 (1989)]

    Google Scholar 

  12. V.M. Braun, I.E. Halperin, Z. Phys. C 48, 239 (1990) [Sov. J. Nucl. Phys. 52, 126 (1990)]

    Google Scholar 

  13. M.V. Terentev, Sov. J. Nucl. Phys. 33, 911 (1981) [Yad. Fiz. 33, 1692 (1981)]

    Google Scholar 

  14. M. Beneke, M. Neubert, Nucl. Phys. B 651, 225 (2003) [hep-ph/0210085]

    Article  Google Scholar 

  15. B. Geyer, M. Lazar, D. Robaschik, Nucl. Phys. B 559, 339 (1999) [hep-th/9901090]

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Geyer, M. Lazar, Nucl. Phys. B 581, 341 (2000) [hep-th/0003080]

    Article  MathSciNet  MATH  Google Scholar 

  17. A.V. Radyushkin, Phys. Lett. B 385, 333 (1996) [hep-ph/9605431]

    Article  Google Scholar 

  18. T. Ohrndorf, Nucl. Phys. B 186, 153 (1981)

    Google Scholar 

  19. M.A. Shifman, M.I. Vysotsky, Nucl. Phys. B 186, 475 (1981)

    Google Scholar 

  20. V.N. Baier, A.G. Grozin, Nucl. Phys. B 192, 476 (1981)

    Google Scholar 

  21. M.V. Terentev, JETP Lett. 33, 67 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 71 (1981)]

    Google Scholar 

  22. A.V. Belitsky, D. Muller, Nucl. Phys. B 537, 397 (1999) [hep-ph/9804379]

    Article  Google Scholar 

  23. T. Feldmann, Int. J. Mod. Phys. A 15, 159 (2000) [hep-ph/9907491]

    Article  Google Scholar 

  24. K. Hagiwara [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002)

    Article  Google Scholar 

  25. S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 1808 (1981)

    Google Scholar 

  26. T. Feldmann, P. Kroll, Phys. Rev. D 58, 057501 (1998) [hep-ph/9805294]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 8 July 2003, Published online: 5 September 2003

A. Ali: On leave of absence from Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

A.Ya. Parkhomenko: On leave of absence from Department of Theoretical Physics, Yaroslavl State University, Sovietskaya 14, 150000 Yaroslavl, Russia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A., Parkhomenko, A.Y. The \(\eta^\prime g^* g^{(*)}\) vertex including the \(\eta^\prime\)-meson mass. Eur. Phys. J. C 30, 367–380 (2003). https://doi.org/10.1140/epjc/s2003-01302-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2003-01302-6

Keywords

Navigation