1 Erratum to: Eur. Phys. J. C (2020) 80:65 https://doi.org/10.1140/epjc/s10052-020-7621-7

In this Erratum we correct terms involving finite \(m_\ell \) and \(C_T\) in \(D \rightarrow \pi \ell \ell \) distributions. We further adapt the \(q^2\) integration limits corresponding to the LHCb analysis [1]. We give the modifications regarding these two points, as well as further corrections. Note, further numerics of the article are unaffected and the conclusion remains unchanged.

\(D \rightarrow \pi \ell \ell \) distributions Errors in Eqs. (7), (17), (18) and (21) involving \(C_T\) and finite \(m_\ell \)-terms have been fixed. The corrected distributions are in agreement with Ref. [2], and therefore footnote 1 has been removed. The correct expressions read

$$\begin{aligned} {\text {d}\varGamma \over \text {d}q^2}&= {G_F^2 \alpha _e^2 \over 1024\pi ^5 m_D^3} \sqrt{\lambda _{DP} \biggl ( 1 - {4m_\ell ^2 \over q^2} \biggr )}\nonumber \\&\quad \times \biggl \{{2\over 3} \biggl | C_9 + C_9^R + C_7 {2m_c \over m_D + m_P} {f_T \over f_+} \biggr |^2 \nonumber \\&\quad \times \left( 1 + {2m_\ell ^2 \over q^2} \right) \lambda _{DP} f_+^2 \biggr . \nonumber \\&\quad + |C_{10}|^2 \biggl [ {2\over 3} \left( 1 - {4m_\ell ^2 \over q^2} \right) \lambda _{DP} f_+^2 \biggr .\nonumber \\&\quad + {4m_\ell ^2 \over q^2} (m_D^2-m_P^2)^2 f_0^2 \biggl .\biggr ]\nonumber \\&\quad + \left[ |C_S|^2 \left( 1 - {4m_\ell ^2 \over q^2} \right) + |C_P + C_P^R|^2 \right] \nonumber \\&\quad \times {q^2 \over m_c^2} (m_D^2-m_P^2)^2 f_0^2 \nonumber \\&\quad + {4\over 3} \left[ |C_T|^2 + |C_{T5}|^2 \right] \left( 1 - {4m_\ell ^2 \over q^2} \right) {q^2 \,\lambda _{DP} f_T^2 \over (m_D + m_P)^2} \nonumber \\&\quad + 8 \,\text {Re}\left[ \left( C_9 + C_9^R + C_7 {2m_c \over m_D + m_P} {f_T \over f_+} \right) C_T^*\right] \nonumber \\&\quad \times {m_\ell \over m_D + m_P} \lambda _{DP} f_+ f_T\nonumber \\&\quad + 4\,\text {Re}\left[ C_{10} \left( C_P + C_P^R \right) ^* \right] {m_\ell \over m_c} (m_D^2-m_P^2)^2 f_0^2 \nonumber \\&\quad \biggr .+16\,|C_T|^2 \frac{m_\ell ^2}{(m_D+m_P)^2}\lambda _{DP}f_T^2 \biggr \}, \end{aligned}$$
(7)
$$\begin{aligned} A_\mathrm{FB}(q^2)&= {1 \over \varGamma } \left[ \int _0^1 - \int _{-1}^0 \right] {\text {d}^2\varGamma \over \text {d}q^2 \text {d}\cos \theta } \text {d}\cos \theta = {b(q^2) \over \varGamma } \nonumber \\&= {1\over \varGamma } {G_F^2 \alpha _e^2 \over 512\pi ^5 m_D^3} \lambda _{DP} \biggl ( 1 - {4m_\ell ^2 \over q^2} \biggr ) \nonumber \\&\quad \times \biggl \{\biggr . \text {Re}\left[ \left( C_9 + C_9^R + C_7 {2m_c \over m_D + m_P} {f_T \over f_+} \right) C_S^* \right] \nonumber \\&\quad \times {m_\ell \over m_c} f_+ \nonumber \\&\quad + 2\text {Re}\left[ C_{10} C_{T5}^* \right] {m_\ell \over m_D + m_P} f_T \nonumber \\&\quad + \text {Re}\left[ C_S C_T^* + \left( C_P + C_P^R \right) C_{T5}^* \right] \nonumber \\&\quad \times {q^2 \over m_c (m_D + m_P)} f_T \biggl .\biggr \} (m_D^2-m_P^2) f_0 , \end{aligned}$$
(17)
$$\begin{aligned} F_H(q^2)&= {2\over \varGamma } [a(q^2) + c(q^2)] \nonumber \\&= {1 \over \varGamma } {G_F^2 \alpha _e^2 \over 1024\pi ^5 m_D^3} \sqrt{\lambda _{DP} \biggl ( 1 - {4m_\ell ^2 \over q^2} \biggr )}\, \nonumber \\&\quad \times \biggl \{\biggr . \biggl | C_9 + C_9^R + C_7 {2m_c \over m_D+m_P} {f_T \over f_+} \biggr |^2 {4m_\ell ^2 \over q^2} \lambda _{DP} f_+^2 \nonumber \\&\quad + |C_{10}|^2 {4m_\ell ^2 \over q^2} (m_D^2-m_P^2)^2 f_0^2 \nonumber \\&\quad + \left[ |C_S|^2 \left( 1 - {4m_\ell ^2 \over q^2} \right) + |C_P + C_P^R|^2 \right] \nonumber \\&\quad \times {q^2 \over m_c^2} (m_D^2-m_P^2)^2 f_0^2 \nonumber \\&\quad + 4\,\left[ |C_T|^2 + |C_{T5}|^2 \right] \left( 1 - {4m_\ell ^2 \over q^2} \right) \nonumber \\&\quad \times {q^2 \over (m_D + m_P)^2} \lambda _{DP} f_T^2 \nonumber \\&\quad + 8\,\text {Re}\left[ \left( C_9 + C_9^R + C_7 {2m_c \over m_D + m_P} {f_T \over f_+} \right) C_T^*\right] \nonumber \\&\quad {m_\ell \over m_D + m_P} \lambda _{DP} f_+ f_T\nonumber \\&\quad + 4\,\text {Re}\left[ C_{10} \left( C_P + C_P^R \right) ^* \right] {m_\ell \over m_c} (m_D^2-m_P^2)^2 f_0^2 \nonumber \\&\quad +16\,|C_T|^2 \frac{m_\ell ^2}{(m_D+m_P)^2}\lambda _{DP} f_T^2 \biggr .\biggr \}, \end{aligned}$$
(18)
$$\begin{aligned} {\text {d}\varGamma \over \text {d}q^2} - {\text {d}\overline{\varGamma }\over \text {d}q^2}&= {G_F^2 \alpha _e^2 \over 256\pi ^5 m_D^3} \sqrt{\lambda _{DP} \biggl ( 1 - {4m_\ell ^2 \over q^2} \biggr )}\, \nonumber \\&\quad \times \biggl \{\biggr . {2\over 3} \,\text {Im}\left[ C_9 + 2C_7 {m_c \over m_D + m_P} {f_T \over f_+} \right] \nonumber \\&\quad \times \text {Im}\left[ C_9^R \right] \left( 1 + {2m_\ell ^2 \over q^2} \right) \lambda _{DP} f_+^2 \nonumber \\&\quad + \text {Im}\left[ C_P \right] \text {Im} \left[ C_P^R \right] {q^2 \over m_c^2} (m_D^2-m_P^2)^2 f_0^2 \nonumber \\&\quad + 4\,\text {Im}\left[ C_T \right] \text {Im}\left[ C_9^R \right] \nonumber \\&\quad \times {m_\ell \over m_D + m_P} \lambda _{DP} f_+ f_T\nonumber \\&\quad + 2\,\text {Im}\left[ C_{10} \right] \text {Im}\left[ C_P^R \right] {m_\ell \over m_c} (m_D^2-m_P^2)^2 f_0^2 \biggr .\biggr \}. \end{aligned}$$
(21)

LHCb and constraints on Wilson coefficients We correct the integration limits of the full \(q^2\)–region according to [1] and add a footnote to Eq. (9). The bounds on Wilson coefficients are changed accordingly. The paragraph is changed to the following:

Table 2 Integrated branching fractions in the high \(q^2\)–bin (\(\sqrt{q^2}\ge 1.25~\hbox {GeV}\)) in the SM and in the NP benchmark scenarios as in Fig. 3. In the third to sixth column, upper entries correspond to NP-only branching ratios while for the lower entries the resonance contributions are taken into account

Using the experimental limits on the branching fraction of \(D^+\rightarrow \pi ^+\mu ^+\mu ^-\) in high and full \(q^2\)–regions at 90% CL [1]Footnote 1,

$$\begin{aligned}&{\mathcal {B}}(D^+\rightarrow \pi ^+\mu ^+\mu ^-)\vert _{\mathrm{full}~q^2}< 7.3 \times 10^{-8} \nonumber \\&\quad \left( 250\,\mathrm{MeV}\le \sqrt{q^2}\le m_{D^+}-m_{\pi ^+}\right) ,\nonumber \\&{\mathcal {B}}(D^+\rightarrow \pi ^+\mu ^+\mu ^-)\vert _{\mathrm{high}~q^2} < 2.6 \times 10^{-8} \nonumber \\&\quad \left( \sqrt{q^2}\ge 1.25~\mathrm{GeV}\right) , \end{aligned}$$
(9)

and neglecting the SM contributions, we obtain the following constraints on the BSM Wilson coefficients in the full \(q^2\)-region,

$$\begin{aligned}&1.2|C_7|^2 + 1.2|C_9|^2 + 1.2|C_{10}|^2 + 2.4|C_S|^2 \nonumber \\&\quad + 2.5|C_P|^2 + 0.4|C_T|^2 + 0.3|C_{T5}|^2 \nonumber \\&\quad + 0.3\,{\mathrm {Re}}[C_9 C_T^*] + 1.0\,{\mathrm {Re}}[C_{10} C_P^*] + 2.4\,{\mathrm {Re}}[C_7 C_9^*] \nonumber \\&\quad + 0.6\,{\mathrm {Re}}[C_7 C_T^*] \lesssim 1. \end{aligned}$$
(10)

and in the high \(q^2\)–region,

$$\begin{aligned}&0.6|C_7|^2 + 0.7|C_9|^2 + 0.8|C_{10}|^2 + 4.4|C_S|^2\nonumber \\&\quad + 4.5|C_P|^2 + 0.4|C_T|^2 + 0.4|C_{T5}|^2 \nonumber \\&\quad + 0.3\,{\mathrm {Re}}[C_9 C_T^*] + 1.1\,{\mathrm {Re}}[C_{10} C_P^*] + 1.4\,{\mathrm {Re}}[C_7 C_9^*] \nonumber \\&\quad + 0.3\,{\mathrm {Re}}[C_7 C_T^*]\lesssim 1, \end{aligned}$$
(11)

Further corrections Updated values for the integrated branching fractions of \(D^+ \rightarrow \pi ^+\mu ^+\mu ^-\) are given in Table 2.

The lifetime factor \(\tau _D\) in Eq. (13) is added on the right hand side.

We correct Eq. (25).Footnote 2 It reads

$$\begin{aligned}&1.3\,\big (|K_9|^2 + |K_{10}|^2\big ) + 2.6\,\big ( |K_S|^2 + |K_P|^2 \big ) \nonumber \\&+ 0.4\,\big ( |K_T|^2 + \big |K_{T5}\big |^2 \big ) \nonumber \\&+ 0.5\,{\mathrm {Re}}\big [ K_{10} K_P^* \pm K_9 K_S^* \big ] \nonumber \\&+0.3\,{\mathrm {Re}}\big [ K_9 K_T^* \pm K_{10} K_{T5}^* \big ] \lesssim 50. \end{aligned}$$
(25)

The corrected version of the article is available at arXiv:1909.11108v3.