## Abstract

This paper is an addendum to Ref. Eur. Phys. J. C79 (2019) no. 8, 714 that supersedes all results (Tables and Figures) in that paper after including the new data on the \(B\rightarrow K^*\mu \mu \) angular distribution released in 2020 by the LHCb collaboration. The new results confirm all the conclusions in Eur. Phys. J. C79 (2019) no. 8, 714, exhibiting an increase in the coherence and significance of the hypotheses and confirming the existence of a puzzle.

## Addendum to: Eur. Phys. J. Chttps://doi.org/10.1140/epjc/s10052-019-7216-3

## State-of-the-art \(b \rightarrow s \ell \ell \) global fits in March 2020

This addendum updates the results presented in Ref. [1] and in Ref. [2] after including the most recent \(B \rightarrow K^*\mu \mu \) angular distribution data from the LHCb collaboration [3], released in March 2020. As such, the tables and figures presented in the following supersede the ones in Ref. [1]:

Figures 1, 2, 3, 4, 5 (left), 5 (right) in Ref. [1] are superseded by Figs. 1, 5 (left), 3, 4, 5 (right), 2 (left), respectively.

Tables I, II, III, and V in Ref. [1] are superseded by Tables 2, 3, 4, and 5, respectively.

The data presented in Ref. [3] corresponds to an integrated luminosity of 4.7 \(\hbox {fb}^{-1}\) collected by LHCb collaboration. Our global analysis now includes 180 observables corresponding to: (i) all previous data [4] (ii) updates discussed in Ref. [1] and (iii) the combined Run1+2016 data for optimized observables presented in Ref. [3]. The combined Run1+2016 data share two main features: on the one hand, the global picture is very coherent with respect to the Run-1 and part of Run-2 (2015-2016) data used in Ref. [1]. On the other hand, errors are generally reduced, specially in the bins [1.1, 2.5] and [2.5, 4.0]. These two features, by themselves, will reduce the p-value of the SM as we will see below.

In the analysis presented in this addendum, besides updating the data, we have also updated some input parameters (see Table 1) and improved the theoretical prediction for \(B_s \rightarrow \mu \mu \) using the results from Refs. [5, 6]. However, it turns out that this theory update has a relatively marginal impact on our results.

### Theoretical update of \(B_s \rightarrow \mu \mu \)

Our analyses include \({{\mathcal {B}}}(B_s \rightarrow \mu ^+\mu ^-)\) as it constrains the space for NP contributions in \({{\mathcal {C}}}_{10\mu }\) and \(\mathcal{C}_{10'\mu }\) significantly. The expression of this branching ratio can be derived from Ref. [7] taking into account that we use \(\mathcal{O}_{10\ell }=\frac{e^2}{16\pi ^2}({\bar{s}}\gamma _{\mu }P_{L}b)(\bar{\ell }\gamma ^{\mu }\gamma _5\ell )\), where \({P_{L}=\frac{1 {-}\gamma _5}{2}}\), instead of the axial operator \(\mathcal{O}_{A}=({\bar{b}}\gamma _{\mu }s)(\bar{\ell }\gamma ^{\mu }\gamma _5\ell )\) used in Ref. [7] and therefore reads

where \(r={2m_{\mu }}/{m_{B_s}}\). Once NP contributions in \({{\mathcal {C}}}_{10}\) and in the chirality-flipped Wilson coefficient \({{\mathcal {C}}}_{10^\prime }\) are included, the full expression in our analyses, excluding scalar and pseudoscalar operators, reads

where \({{\mathcal {C}}}_{10\mu }={{\mathcal {C}}}^\mathrm{{SM}}_{10\mu }+\mathcal{C}^\mathrm{{NP}}_{10\mu }\).

As discussed in Refs. [8, 9], the LHCb measurement of \(B_s\) decays is performed after integrating the time evolution of the \(B_s\) meson and its mixing with \({\bar{B}}_s\). The resulting correction is an effect of \(O(\Delta \Gamma _s/\Gamma _s)\) and it is modulated by an asymmetry \(A_{\Delta \Gamma }\) which depends on the process considered. In the SM, for \(B_s\rightarrow \mu \mu \), this asymmetry is known to be +1 [9]: the time-integrated branching ratio \(\overline{{{\mathcal {B}}}}_{s\mu \mu }\) is then obtained from \(\mathcal{B}_{B_s\rightarrow \mu \mu }\) by replacing the average of the lifetimes of the light and heavy mass eigenstates \(\tau _{B_s}\) by that of the heavy mass eigenstate \(\tau ^s_{H}\) (see for instance the assessment performed in Ref. [7] within the SM). The asymmetry \(A_{\Delta \Gamma }\) can be changed in the presence of NP contributions to \({{\mathcal {C}}}_{10'\mu }\), inducing an a priori different \(O(\Delta \Gamma _s/\Gamma _s)\) correction from time integration.^{Footnote 1} In principle we should thus enlarge the error on the prediction of \(\bar{{\mathcal {B}}}_{B_s\rightarrow \mu \mu }\) in the case of scenarios involving NP in \({{\mathcal {C}}}_{10'\mu }\) to take into account the uncertainty on the \(O(\Delta \Gamma _s/\Gamma _s)\) correction. We checked explicitly that enlarging this uncertainty has no actual impact on the outcome of the fits and for simplicity we will thus keep the SM uncertainty on \(\bar{\mathcal{B}}_{B_s\rightarrow \mu \mu }\) for all our analyses.

The most recent theoretical prediction for \({{\mathcal {B}}}_{B_s\rightarrow \mu \mu }\) includes a set of electromagnetic corrections at scales below \(m_b\) that are dynamically enhanced by \(m_b/\Lambda _\mathrm{{QCD}}\) and by large logarithms [5]. The size of such corrections, found to be \(1\%\), is larger than previous estimates of next-to-leading order QED effects, assessed to be \(\pm 0.3\%\). To account for these new corrections, we have rescaled our theoretical prediction Eq. (2) by an overall factor \(\Delta _{B_{s\mu \mu }}\) so that our own set of input parameters yields an SM result in agreement with the value presented at the Orsay workshop in 2019 [6]:

where the effect of the QED corrections from Ref. [5] is introduced as a global factor \(\eta _\mathrm{{QED}}=0.993\).

### Updated 1D, 2D and 6D global fits to \(b\rightarrow s \ell \ell \) flavour anomalies in March 2020

Tables 2, 3 and 4 collect the updated results for the most prominent LFUV NP scenarios. These tables (updated using March 2020 data) supersede the ones presented in in Ref. [1], i.e. Tabs. I, II and III, respectively. A discussion on the most relevant NP scenarios can be found in Ref. [1]. Figure 1 provide a graphical account of the most remarkable results.

Table 5 collects the updated NP scenarios combining LFUV and LFU, thus superseding the results presented in Ref. [1] (Table V) and those presented in Ref. [2]. Among the scenarios presented in this table, we find one of the most significant solutions in terms of sigmas (scenario 8) as can also be seen in Figs. 3 and 4.

We observe an excellent consistency between the previous and the new data. This is a remarkable fact since almost 50 angular observables have been updated in the most recent LHCb collaboration analysis with uncertainty reductions of \(30-50\%\) or more (in particular for the bins [1.1, 2.5] and [2.5, 4]). The consistency between all observables previously observed is confirmed with a slightly increased tension (bin by bin) compared to the SM in basically all angular observables. New tensions with respect to the SM appear in \(\langle P_3 \rangle _{[1.1,2.5]}\), \(\langle P'_6 \rangle _{[6,8]}\) and \(\langle P'_8 \rangle _{[1.1,2.5]}\). The tension in the first bin of \(P'_5\) has decreased and it is now more similar in size with respect to other tensions [10] (with the caveat that the experimental analysis relies on an expression of the angular distribution holding in the massless limit, which might bias the analysis in this first bin). The pull of \(\langle P'_4 \rangle _{[4,6]}\) has changed sign so that \(\langle P'_4 \rangle _{[4,6]}\) and \(\langle P_1 \rangle _{[4,6]}\) are not anymore in tension, favouring a contribution to \({{\mathcal {C}}}_{10'\mu }\) (see Table 3).

Following this increased consistency, there are two particularly positive features of the new data:

- (1)
On the one hand, only one of the anomalous bins in \(P'_5\) ([4, 6]) sees its individual significance marginally decreased from \(2.9\sigma \) to \(2.7\sigma \), while the second one ([6, 8]) remains at \(2.9\sigma \). However, the change in central value and uncertainty for \(\langle P_5^\prime \rangle _{[4,6]}\) improves the agreement among the different observables, especially with \(R_K\), for our most favoured NP scenarios, as illustrated in Fig. 2.

- (2)
On the other hand, the new average value for \(F_L\) in the bin [2.5, 4] is now more than \(4\sigma \) below 1, while the previous value was at approximately \(1\sigma \) from 1, which generated instability problems in some optimised observables in this bin due to a normalization. With the new data this problem is alleviated and we can use the optimised observables in all bins.

In summary, all results show now the following global picture:

Besides an increase of significance of some scenarios (up to 0.8\(\sigma \)), there is no significant change, neither in the hierarchies among scenarios, nor in confidence intervals for the Wilson coefficients, with respect to the results presented in our earlier analysis presented in Ref. [1]. Our updated results therefore confirm the preexisting picture which calls for NP and they support the scenarios already favoured to explain the deviations.

There is a reduction of the internal tensions between some of the most relevant observables of the fit, in particular, between the new averages of \(R_K\) and \(P'_5\). This leads to an increase in consistency between the different anomalies. This is illustrated in Fig. 2 (left) showing a better agreement between the predictions for \(P_5^\prime \) in the most relevant NP scenarios and its updated measurement. Furthermore, in Fig. 2 (right), the best-fit points for the three favoured NP scenarios \({{\mathcal {C}}}^\mathrm{{NP}}_{9\mu }\) (Ref. [11]), \(\{{{\mathcal {C}}}^\mathrm{{NP}}_{9\mu }, {{\mathcal {C}}}_{9'\mu }=-{{\mathcal {C}}}_{10'\mu }\}\) (Ref. [1]) and \(\{{{\mathcal {C}}}^\mathrm{{V}}_{9\mu }=-\mathcal{C}^\mathrm{{V}}_{10\mu }, {{\mathcal {C}}}^\mathrm{{U}}_{9}\}\) (Ref. [2]) can explain two of the most relevant anomalies, \(\langle P_5^\prime \rangle _{[4,6]}\) and \(R_K\), in a perfect way. On the contrary, we see that the scenarios of NP in \({{\mathcal {C}}}_{10\mu }\) only or in \({{\mathcal {C}}}_{9\mu }^\mathrm{NP}=-{{\mathcal {C}}}_{10\mu }^\mathrm{NP}\) do not provide such a good agreement (this holds for any value of the NP contribution).

The reduced uncertainties of the \(B\rightarrow K^*\mu \mu \) data and its improved internal consistency sharpen statistical statements on the hypotheses considered. There is a significant increase of the statistical exclusion of the SM hypothesis as its p-value is reduced down to \(1.4\%\) (i.e. 2.5\(\sigma \)). The \(\hbox {Pull}_\mathrm{SM}\) of the 6D fit is now higher (5.8\(\sigma \)).

Finally, we have updated the figures corresponding to specific simplified models in Fig. 5. In particular, our scenario 8 can still be interpreted in an EFT framework explaining \(b\rightarrow c\ell \nu \) and \(b\rightarrow s\ell \ell \) through correlated singlet and triplet dimension-6 operators combining quark and lepton bilinears. Both \(b\rightarrow s\ell \ell \) and \(b\rightarrow c\ell \nu \) show a very good agreement with this interpretation (see the right-hand side of Fig. 5) which indicates that scenario 8 is compatible with the tensions in \(R_{D^{(*)}}\) if one assumes that the only significant contributions come from the operators \({{\mathcal {O}}}^{2333}\) and \({{\mathcal {O}}}^{2322}\) in the language of Ref. [12]. The pull of this scenario reaches 7.4\(\,\sigma \) taking into account the deviations also observed in \(R_{D^{(*)}}\).

The updated measurements of the \(B\rightarrow K^*\mu \mu \) angular observables give also further possibilities to cross check the stability of our fits regarding internal inconsistencies within the data or underestimated hadronic effects by examining the \(q^2\)-dependence of our extraction (see Fig. 6). We perform fits testing 1D hypotheses selecting only the available LHCb data for \(B\rightarrow K^*\mu \mu \) branching ratios and angular observables [3, 13, 14] in a given bin in \(q^2\), together with data on \(B_s\rightarrow \mu \mu \), \(B\rightarrow X_s\mu \mu \) and \(b \rightarrow s\gamma \) processes. We consider 1) the scenario with NP only in \({{\mathcal {C}}}_{9\mu }\), 2) the scenario with NP in \(\mathcal{C}_{9\mu }^\mathrm{NP}=-{{\mathcal {C}}}_{10\mu }^\mathrm{NP}\), 3) the scenario 8, where we fix the LFUV part \({{\mathcal {C}}}_{9\mu }^\mathrm{V}=-\mathcal{C}_{10\mu }^\mathrm{V}\) to the b.f.p of the global fit and determine the value of \({{\mathcal {C}}}_{9}^\mathrm{U}\) through the fit. In all three cases, we observe an excellent agreement between the bin-by-bin determination and the outcome of the global fit, without significant \(q^2\)-dependence. For the scenario with NP only in \(\mathcal{C}_{9\mu }\), a \(q^2\)-variation could have been the sign of underestimated hadronic effects from \(c{\bar{c}}\)-loop contributions [15]. For the two other scenarios, a \(q^2\)-dependence would have been the indication of an inconsistency in the experimental data or the theoretical approaches (in particular between the low- and large-recoil bins, where very different theoretical tools are used). It is very reassuring to see that there are no hints of such problems in our analyses.

In the future, we expect more data not only to reduce the uncertainties on the \(B\rightarrow K^*\mu \mu \) observables, but also to increase further the consistency between \(B\rightarrow K^*\mu \mu \) data and the rest of the data. On the basis of Figs. 2 and 6 , we see that several NP scenarios currently favoured by our global fit would push the central value of \(\langle P'_5 \rangle _{[6,8]}\) slightly closer to the SM value than currently measured, whereas the determination of \(P_5'\) in the other bins should yield the same central values as now.

In conclusion, we see that the recent update of \(B \rightarrow K^*\mu \mu \) optimised observables by the LHCb collaboration leads to improved constraints on NP scenarios. The overall preferences for specific scenarios remain unchanged but we observe a higher consistency among the data analysed in the framework of the favoured scenarios. We expect thus the final update of both \(B \rightarrow K^*\mu \mu \) optimised observables and \(R_K\) including all the remaining recorded data to be an important step forward in the clarification of the *b*-flavour anomalies and the understanding of their origin.

## Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The experimental data used in the analysis presented in this addendum has already been published by the different experimental collaborations cited in the manuscript. Any further data related to the specifics of our analysis can be reproduced by following the procedures detailed in the text and references therein, that we cite whenever it is appropriate.]

## Notes

It can also be modified by contributions to scalar or pseudoscalar NP contributions, as well as by NP contributions with an imaginary part, but we do not consider such hypotheses among our NP scenarios.

## References

M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Matias, M. Novoa, J. Virto, Eur. Phys. J. C

**79**(8), 714 (2019). https://doi.org/10.1140/epjc/s10052-019-7216-3. rXiv:1903.09578 [hep-ph]M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan, J. Matias, “Are we overlooking lepton flavour universal new physics in \(b\rightarrow s\ell \ell \) ?,”. Phys. Rev. D

**99**(7), 075017 (2019). arXiv:1809.08447 [hep-ph]R. Aaij

*et al.*[LHCb collaboration], Measurement of \(C\!P\)-averaged observables in the \(B^{0}\rightarrow K^{*0}\mu ^{+}\mu ^{-}\) decay. arXiv:2003.04831 [hep-ex]B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, J. Virto, Patterns of New Physics in \(b\rightarrow s\ell ^+\ell ^-\) transitions in the light of recent data. JHEP

**1801**, 093 (2018). arXiv:1704.05340 [hep-ph]M. Beneke, C. Bobeth, R. Szafron, “Enhanced electromagnetic correction to the rare \(B\)-meson decay \(B_{s,d} \rightarrow \mu ^+ \mu ^-\),”. Phys. Rev. Lett

**120**(1), 011801 (2018). arXiv:1708.09152 [hep-ph]Talk given by M. Misiak at the workshop “New physics at the low-energy precision frontier”, Orsay, 16th–20th September 2019. https://indico.cern.ch/event/815529/ and private communication

C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou, M. Steinhauser, \(B_{s, d} \rightarrow \ell ^+ \ell ^-\) in the standard model with reduced theoretical uncertainty. Phys. Rev. Lett.

**112**, 101801 (2014). arXiv:1311.0903 [hep-ph]S. Descotes-Genon, J. Matias, J. Virto, An analysis of \(B_{d, s}\) mixing angles in presence of New Physics and an update of \(B_s \rightarrow K^{0*} {{\bar{K}}}^{0*}\). Phys. Rev. D

**85**, 034010 (2012). arXiv:1111.4882 [hep-ph]K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk, A. Pellegrino, N. Tuning, Probing New Physics via the \(B^0_s\rightarrow \mu ^+\mu ^-\) Effective Lifetime. Phys. Rev. Lett.

**109**, 041801 (2012). arXiv:1204.1737 [hep-ph]M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan, J. Matias, What \(R_K\) and \(Q_5\) can tell us about New Physics in \(b\rightarrow s\ell \ell \) transitions? JHEP

**07**, 096 (2019). arXiv:1902.04900 [hep-ph]S. Descotes-Genon, J. Matias, J. Virto, Understanding the \(B\rightarrow K^*\mu ^+\mu ^-\) Anomaly. Phys. Rev. D

**88**, 074002 (2013). arXiv:1307.5683 [hep-ph]B. Capdevila, A. Crivellin, S. Descotes-Genon, L. Hofer, J. Matias, “Searching for New Physics with \(b\rightarrow s\tau ^+\tau ^-\) processes,”. Phys. Rev. Lett.

**120**(18), 181802 (2018). arXiv:1712.01919 [hep-ph]R. Aaij

*et al.*[LHCb Collaboration], “Measurements of the S-wave fraction in \(B^{0}\rightarrow K^{+}\pi ^{-}\mu ^{+}\mu ^{-}\) decays and the \(B^{0}\rightarrow K^{\ast }(892)^{0}\mu ^{+}\mu ^{-}\) differential branching fraction,” JHEP**1611**(2016) 047 Erratum: [JHEP**1704**(2017) 142]. arXiv:1606.04731 [hep-ex]R. Aaij et al., [LHCb collaboration], “Differential branching fractions and isospin asymmetries of \(B \rightarrow K^{(*)} \mu ^+ \mu ^-\) decays,”. JHEP

**1406**, 133 (2014). arXiv:1403.8044 [hep-ex]B. Capdevila, S. Descotes-Genon, L. Hofer, J. Matias, Hadronic uncertainties in \(B \rightarrow K^* \mu ^+ \mu ^-\): a state-of-the-art analysis. JHEP

**04**, 016 (2017). arXiv:1701.08672 [hep-ph]W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin, Quark flavor transitions in \(L_\mu -L_\tau \) models. Phys. Rev. D

**89**, 095033 (2014). arXiv:1403.1269 [hep-ph]

## Acknowledgements

We warmly thank M. Misiak for useful discussions on the theoretical update of \({{\mathcal {B}}}_{B_s\rightarrow \mu \mu }\). This work received financial support from European Regional Development Funds under the Spanish Ministry of Science, Innovation and Universities (projects FPA2014-55613-P and FPA2017-86989-P) and from the Agency for Management of University and Research Grants of the Government of Catalonia (project SGR 1069) [MA, BC, PM, JM] and from European Commission (Grant Agreements 690575, 674896 and 69219) [SDG]. The work of PM is supported by the Beatriu de Pinos postdoctoral program co-funded by the Agency for Management of University and Research Grants of the Government of Catalonia and by the COFUND program of the Marie Sklodowska-Curie actions under the framework program Horizon 2020 of the European Commission. JM gratefully acknowledges the financial support by ICREA under the ICREA Academia programme. JV acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 700525, ‘NIOBE’ and support from SEJI/2018/033 (Generalitat Valenciana). The work of AC is supported by a Professorship Grant (PP00P2_176884) of the Swiss National Science Foundation.

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

The original article can be found online at https://doi.org/10.1140/epjc/s10052-019-7216-3

## Appendix: Correlations among fit parameters

### Appendix: Correlations among fit parameters

In addition to the confidence regions provided for the various scenarios in this article, we display here the correlation matrices among the Wilson coefficients for the most interesting NP scenarios including the data available in March 2020.

### Correlation matrices of fits to LFUV NP

Following the same ordering for the correlation matrices as in Appendix A1 of Ref. [1], we find for the updated analysis:

The last two matrices correspond to Hyp. 1 and Hyp. 5 in Table 3.

Regarding the 6D fit of Table 4,

where the columns in the matrix above are organized as in the analogous matrix in Appendix A1 of Ref. [1].

\(\text {Corr}_\text {6D}\) shows a significant correlation in the pairs \(\{\mathcal {C}_{10\mu }^\text {NP},\mathcal {C}_{9'\mu }\}\), \(\{\mathcal {C}_{10\mu }^\text {NP},\mathcal {C}_{10'\mu }\}\) and \(\{\mathcal {C}_{9'\mu },\mathcal {C}_{10'\mu }\}\), which is coherent with previous results in Appendix A1 of Ref. [1].

#### Correlation matrices of fits to LFUV-LFU NP

We also provide the correlations between fit parameters of scenarios 5–11 from Table 5, in that order:

The situation is very similar to the previous analysis in Appendix A2 of Ref. [1], showing a high anti-correlation between \(\mathcal {C}_{9\mu }^\text {V}\) and \(\mathcal {C}_{9}^\text {U}\), and an even more reduced correlation between the coefficients of the scenario \(\{\mathcal {C}_{9\mu }^\text {V},\mathcal {C}_{10}^\text {U}\}\).

## Rights and permissions

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP^{3}

## About this article

### Cite this article

Algueró, M., Capdevila, B., Crivellin, A. *et al.* Addendum to: Emerging patterns of New Physics with and without Lepton Flavour Universal contributions.
*Eur. Phys. J. C* **80**, 511 (2020). https://doi.org/10.1140/epjc/s10052-020-8018-3

Received:

Accepted:

Published:

DOI: https://doi.org/10.1140/epjc/s10052-020-8018-3