\(\varvec{B^0\rightarrow K^{*0}\mu ^+\mu ^-}\) decay in the aligned two-Higgs-doublet model

Open Access
Regular Article - Theoretical Physics

Abstract

In the aligned two-Higgs-doublet model, we perform a complete one-loop computation of the short-distance Wilson coefficients \(C_{7,9,10}^{(\prime )}\), which are the most relevant ones for \(b\rightarrow s\ell ^+\ell ^-\) transitions. It is found that, when the model parameter \(\left| \varsigma _{u}\right| \) is much smaller than \(\left| \varsigma _{d}\right| \), the charged scalar contributes mainly to chirality-flipped \(C_{9,10}^\prime \), with the corresponding effects being proportional to \(\left| \varsigma _{d}\right| ^2\). Numerically, the charged-scalar effects fit into two categories: (A) \(C_{7,9,10}^\mathrm {H^\pm }\) are sizable, but \(C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0\), corresponding to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) region; (B) \(C_7^\mathrm {H^\pm }\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are sizable, but \(C_{9,10}^\mathrm {H^\pm }\simeq 0\), corresponding to the (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) region. Taking into account phenomenological constraints from the inclusive radiative decay \(B\rightarrow X_{s}{\gamma }\), as well as the latest model-independent global analysis of \(b\rightarrow s\ell ^+\ell ^-\) data, we obtain the much restricted parameter space of the model. We then study the impact of the allowed model parameters on the angular observables \(P_2\) and \(P_5'\) of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay, and we find that \(P_5'\) could be increased significantly to be consistent with the experimental data in case B.

1 Introduction

The rare \(B\rightarrow K^{*}\ell ^+\ell ^-\) decays, being the flavor-changing neutral-current (FCNC) processes, do not arise at tree level and are highly suppressed at higher orders within the Standard Model (SM), due to the Glashow–Iliopoulos–Maiani (GIM) mechanism [1]. However, new TeV-scale particles in many extensions of the SM could affect the decay amplitude at a similar level as the SM does. These decays play, therefore, a crucial role in testing the SM and probing various NP scenarios beyond it [2]. It is particularly interesting to note that, based on these decays, observables with a very limited sensitivity to hadronic uncertainties can be constructed, enhancing therefore the discovery potential for NP [3, 4, 5, 6, 7, 8, 9, 10].

Experimentally, several interesting deviations from the SM predictions have been observed in these decays. In 2013, the form-factor-independent angular observable \(P'_5\) [8, 9] of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay was measured by the LHCb collaboration [11], showing a \(3.7\sigma \) disagreement with the SM expectation [12, 13, 14, 15]. Recently, the LHCb collaboration has released new measurements of the angular observables in this decay, based on the dataset of \(3~\mathrm {fb}^{-1}\) of integrated luminosity, and still found a \(3.4\sigma \) deviation for \(P'_5\) [16]. Moreover, being in agreement with the LHCb measurements, a deviation with a significance of \(2.1\sigma \) was also reported by the Belle collaboration [17]. Besides the \(P'_5\) anomaly, there are some other slight deviations beyond the \(2\sigma \) level, such as the observables \(P_2\) in \(q^2\in [2,4.3]~\mathrm {GeV}^2\) and \(P'_4\) in \(q^2\in [14.18,16]~\mathrm {GeV}^2\) [18, 19, 20]. These anomalies have triggered lots of theoretical studies both within the SM and in various NP models [8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

As a minimal extension of the SM scalar sector, the two-Higgs-doublet model (2HDM) [45] can easily satisfy the electroweak (EW) precision data and, at the same time, lead to a very rich phenomenology [46]. The scalar spectrum consists of two charged scalars \(H^\pm \) and three neutral ones \(h,\,H\), and A, one of which is to be identified with the SM-like Higgs boson found at the LHC [47, 48]. The direct search for these additional scalar states would be an important task for high-energy colliders in the next few years. It should be noted that, complementary to the direct searches, indirect constraints on the 2HDM could also be obtained from the rare FCNC decays like \(B\rightarrow K^{*}\ell ^+\ell ^-\), since these scalars can affect these processes through the penguin and box diagrams. These studies are also very helpful to gain further insights into the scalar sector of supersymmetry and other models that have similar scalar contents [49, 50, 51].

In a generic 2HDM, the non-diagonal couplings of neutral scalars to fermions lead to tree-level FCNC interactions, which can be avoided by imposing on the Lagrangian an ad hoc discrete \(\mathcal {Z}_2\) symmetry. Depending on the \(\mathcal {Z}_2\) charge assignments to the scalars and fermions, this results in four types of 2HDMs (types I, II, X, Y) [46, 52] under the hypothesis of natural flavor conservation (NFC) [53]. In the aligned two-Higgs-doublet model (A2HDM) [54], on the other hand, the absence of tree-level FCNCs is automatically guaranteed by assuming the alignment in flavor space of the Yukawa matrices for each type of right-handed fermions. Interestingly, the A2HDM can recover as particular cases all known specific implementations of the 2HDMs based on \(\mathcal {Z}_2\) symmetries. The model also features possible new sources of CP violation beyond that of the Cabibbo–Kobayashi–Maskawa (CKM) matrix [55, 56]. These features make the A2HDM very attracting both in high-energy collider physics [57, 58, 59, 60, 61, 62, 63] and in low-energy flavor physics [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74].

In this paper, we will study the decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) in the A2HDM. Our paper is organized as follows: in Sect. 2, we give a brief overview of the A2HDM, focusing mainly on the scalar and Yukawa sectors. In Sect. 3, a complete one-loop computation of the short-distance (SD) Wilson coefficients \(C_{7,9,10}^{(\prime )}\) is presented, and the final analytical expressions are given both within the SM and in the A2HDM. The angular observables of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay are also introduced in this section. In Sect. 4, taking into account phenomenological constraints from the inclusive radiative decay \(B\rightarrow X_s\gamma \) and the latest model-independent global analysis of \(b\rightarrow s\ell ^+\ell ^-\) data, we study the impact of the allowed model parameters on the angular observables \(P_2\) and \(P_5'\) of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay. Finally, our conclusions are drawn in Sect. 5. Some relevant functions for the Wilson coefficients are collected in the appendices.

2 The aligned two-Higgs-doublet model

We consider the minimal version of 2HDM, which is invariant under the SM gauge group and includes, besides the SM matter and gauge fields, two complex scalar \({SU\left( 2\right) _{L}}\) doublets,
$$\begin{aligned} \phi _a^\mathrm{T}\left( x\right) =\frac{\mathrm {e}^{i\theta _a}}{\sqrt{2}}(\sqrt{2}\varphi ^+_a, \,v_a+\rho _a+i\eta _a), \quad \left( a=1,\,2\right) , \end{aligned}$$
(2.1)
with the hypercharge \(Y=1/2\). The neutral components of the two scalar doublets acquire the vacuum expectation values (VEVs) \(\langle 0|\phi _a^\mathrm{T}\left( x\right) |0\rangle = (0, v_a\mathrm {e}^{i\theta _a}/\sqrt{2})\). Through an appropriate \({U(1)}_Y\) transformation, one can enforce \(\theta _1=0\) and leave the relative phase \(\theta =\theta _2-\theta _1\) as physical. Using further a global SU(2) transformation in the scalar space, one can rotate the original scalar basis to the so-called Higgs basis [75, 76, 77],
$$\begin{aligned} \left( \begin{array}{c} \Phi _1 \\ -\Phi _2 \end{array} \right) \equiv \left( \begin{array}{cc} \cos \beta &{} \sin \beta \\ \sin \beta &{} -\cos \beta \end{array} \right) \, \left( \begin{array}{c} \phi _1 \\ \mathrm {e}^{-i\theta }\phi _2 \end{array} \right) , \end{aligned}$$
(2.2)
where the rotation angle (clockwise) \(\tan \beta =v_2/v_1\). In the new basis, only the scalar doublet \(\Phi _1\) gets a nonzero VEV \(\langle 0|\Phi _1^\mathrm{T}\left( x\right) |0\rangle = (0, v/\sqrt{2})\), with \(v=\sqrt{v_1^2+v_2^2}=(\sqrt{2} G_F)^{-1/2} \simeq 246~\mathrm {GeV}\), and the two scalar doublets are now parametrized, respectively, by [54]
$$\begin{aligned} \Phi _1=\left( \begin{array}{c} G^+ \\ \frac{1}{\sqrt{2}}\, (v+S_1+iG^0) \end{array} \right) , \quad \Phi _2 = \left( \begin{array}{c} H^+ \\ \frac{1}{\sqrt{2}}\, (S_2+iS_3) \end{array} \right) , \end{aligned}$$
(2.3)
where \(G^\pm \) and \(G^0\) denote the massless Goldstone fields to be eaten by the \(W^\pm \) and \(Z^0\) gauge bosons, respectively. The remaining five physical degrees of freedom are given by the two charged fields \(H^\pm (x)\) and the three neutral ones \(\varphi ^0_i(x) =\{h(x), H(x), A(x)\}=\mathcal {R}_{ij}S_j\), where \(\mathcal {R}\) is an orthogonal matrix obtained after diagonalizing the mass terms in the scalar potential. Generally, none of these three neutral scalars can have a definite CP quantum number.

2.1 Scalar sector

The most general scalar potential for the two doublets \(\Phi _1\) and \(\Phi _2\) that is allowed by the EW gauge symmetry can be written as [75, 76, 77]
$$\begin{aligned} V&= \mu _{1}\;(\Phi _{1}^{\dagger }\Phi _{1})\,+\,\mu _{2}\;(\Phi _{2}^{\dagger }\Phi _{2})\, +\,[\mu _{3}\;(\Phi _{1}^{\dagger }\Phi _{2})\,+\,\mu _{3}^{*}\;(\Phi _{2}^{\dagger }\Phi _{1} )]\nonumber \\&\quad +\lambda _{1}\,(\Phi _{1}^{\dagger }\Phi _{1})^{2}\,+\,\lambda _{2}\,(\Phi _{2}^{\dagger }\Phi _{2})^{2}\, +\,\lambda _{3}\,(\Phi _{1}^{\dagger }\Phi _{1})(\Phi _{2}^{\dagger }\Phi _{2})\,\nonumber \\&\quad +\,\lambda _{4}\,(\Phi _{1}^{\dagger }\Phi _{2})(\Phi _{2}^{\dagger }\Phi _{1})\nonumber \\&\quad +[(\lambda _{5}\;\Phi _{1}^{\dagger }\Phi _{2}\,+\,\lambda _{6}\;\Phi _{1}^{\dagger }\Phi _{1}\,+\,\lambda _{7}\; \Phi _{2}^{\dagger }\Phi _{2})(\Phi _{1}^{\dagger }\Phi _{2})\,+\,\mathrm {h.c.}]. \end{aligned}$$
(2.4)
The hermiticity of the potential requires the parameters \(\mu _{1,2}\) and \(\lambda _{1,2,3,4}\) to be real, while \(\mu _3\) and \(\lambda _{5,6,7}\) could be generally complex. The minimization condition imposes the relations \(\mu _1 = -\lambda _1 v^2\) and \(\mu _3 = -\frac{1}{2}\,\lambda _6\, v^2\). Since only the relative phases among \(\lambda _{5,6,7}\) are physical, the scalar potential is finally fully characterized by 11 real parameters, v, \(\mu _2\), \(\lambda _{1,2,3,4}\), \(|\lambda _{5,6,7}|\), \(\mathrm {arg}(\lambda _5\lambda _6^*)\) and \(\mathrm {arg}(\lambda _5\lambda _7^*)\), four of which can be determined by the scalar masses \(M_{H^\pm ,\,h,\,H,\,A}\). Explicitly, inserting Eq. (2.3) into Eq. (2.4) and imposing the minimization condition, one gets \(M_{H^\pm }^2=\mu _2+\frac{1}{2}\lambda _3v^2\), and the mass-squared matrix \(\mathcal {M}^{2}\) of \(S_{1,2,3}\) fields in terms of v and \(\lambda _i\). Using the orthogonal matrix \(\mathcal {R}\), one can then obtain the masses of the three neutral scalars, \(\mathcal {R}\,\mathcal {M}^2\,\mathcal {R}^\mathrm{T} = \mathrm {diag}\left( M_{h}^2, M_{H}^2,M_A^2\right) \).
In the CP-conserving limit, \(\lambda _{5,6,7}\) are all real and the neutral scalars are CP eigenstates. The CP-odd scalar A corresponds to \(S_3\), with the mass given by \(M_A^2=M_{H^\pm }^2+ v^2\left( \frac{\lambda _4}{2}-\lambda _5\right) \), while the two CP-even scalars h and H are orthogonal combinations of \(S_1\) and \(S_2\),
$$\begin{aligned} \left( \begin{array}{c} h\\ H \end{array} \right) = \left( \begin{array}{cc} \cos {\tilde{\alpha }} &{} \sin {\tilde{\alpha }} \\ -\sin {\tilde{\alpha }} &{} \cos {\tilde{\alpha }} \end{array}\right) \; \left( \begin{array}{c} S_1\\ S_2 \end{array}\right) , \end{aligned}$$
(2.5)
where the mixing angle \(\tilde{\alpha }\) is determined by
$$\begin{aligned} \tan {\tilde{\alpha }} =\frac{M_{h}^2 - 2\lambda _1 v^2}{v^2\lambda _6} =\frac{v^2\lambda _6}{2\lambda _1 v^2- M_{H}^2}. \end{aligned}$$
(2.6)
The masses of the two neutral scalars are given, respectively, by \(M_{h}^2=\frac{1}{2}\left( \Sigma -\Delta \right) \) and \(M_{H}^2=\frac{1}{2}\left( \Sigma +\Delta \right) \), where
$$\begin{aligned}&\Sigma \, =\, M_{H^\pm }^2\, +\, v^2\,\left( 2\,\lambda _1 +\frac{\lambda _4}{2}+ \lambda _5\right) ,\nonumber \\&\Delta \, =\,\sqrt{\left[ M_{H^\pm }^2\, +\, v^2\,\left( -2\,\lambda _1 +\frac{\lambda _4}{2}+ \lambda _5\right) \right] ^2 + 4 v^4 \lambda _6^2} \nonumber \\&\qquad \!\!\! = \, - \frac{2 v^2\lambda _6}{\sin {(2\tilde{\alpha })}}. \end{aligned}$$
(2.7)
Here \(M_{h} \leqslant M_{H}\) by convention and the SM limit is recovered when \(\tilde{\alpha }=0\).

2.2 Yukawa sector

The Yukawa Lagrangian of the 2HDM is most generally given by [46, 54]
$$\begin{aligned} \mathcal L_Y= & {} -[ \bar{Q}_{L}' (\Gamma _1 \phi _1 +\Gamma _2 \phi _2) d_R' + \bar{Q}_{L}' (\Delta _1 \tilde{\phi }_1 +\Delta _2 \tilde{\phi }_2) u_R' \nonumber \\&+ \bar{L}_{L}' (\Pi _1 \phi _1 + \Pi _2 \phi _2) \ell _R'] + \mathrm {h.c.}, \end{aligned}$$
(2.8)
where \(\tilde{\phi }_a(x)\equiv i\tau _2\phi _a^{*}(x)\) are the charge-conjugated fields with \(Y=-\frac{1}{2}\), \(\bar{Q}_{L}'\) and \(\bar{L}_{L}'\) are the left-handed quark and lepton doublets, and \(u'_R\), \(d'_R\) and \(\ell '_R\) the corresponding right-handed singlets, in the weak-interaction basis. All fermionic fields are written as 3-dimensional vectors and the couplings \(\Gamma _a\), \(\Delta _a\) and \(\Pi _a\) are therefore \(3\times 3\) complex matrices in flavor space.
Transforming to the Higgs basis, Eq. (2.8) becomes
$$\begin{aligned} \mathcal {L}_Y= & {} -\frac{\sqrt{2}}{v}\,[\bar{Q}'_{L} (M'_{d} \Phi _1 + Y'_{d} \Phi _2) d'_R + \bar{Q}'_{L} (M'_{u} \tilde{\Phi }_1\nonumber \\&+ Y'_{u} \tilde{\Phi }_2) u'_R + \bar{L}'_{L} (M'_\ell \Phi _1 + Y'_\ell \Phi _2) \ell '_R ] + \mathrm {h.c.} , \end{aligned}$$
(2.9)
where
$$\begin{aligned} M_{d}'&=\frac{1}{\sqrt{2}}(v_1\Gamma _1+v_2\Gamma _2\mathrm {e}^{i\theta }),&Y_{d}'&=\frac{1}{\sqrt{2}}(-v_2\Gamma _1+v_1\Gamma _2\mathrm {e}^{i\theta }),\end{aligned}$$
(2.10)
$$\begin{aligned} M_{u}'&=\frac{1}{\sqrt{2}}(v_1\Delta _1+v_2\Delta _2\mathrm {e}^{-i\theta }),&Y_{u}'&=\frac{1}{\sqrt{2}}(-v_2\Delta _1+v_1\Delta _2\mathrm {e}^{-i\theta }),\end{aligned}$$
(2.11)
$$\begin{aligned} M_\ell '&=\frac{1}{\sqrt{2}}(v_1\Pi _1+v_2\Pi _2\mathrm {e}^{i\theta }),&Y_\ell '&=\frac{1}{\sqrt{2}}(-v_2\Pi _1+v_1\Pi _2\mathrm {e}^{i\theta }). \end{aligned}$$
(2.12)
In general, the Yukawa matrices \(M_{f}'\) and \(Y_{f}'\) (\(f=u,d,\ell \)) cannot be simultaneously diagonalized in flavor space. Thus, in the mass-eigenstate basis, with diagonal fermion mass matrices \(M_{f}\), the corresponding Yukawa matrices \(Y_{f}\) remain non-diagonal, giving rise to tree-level FCNC interactions. The unwanted tree-level FCNCs can be eliminated by requiring the alignment in flavor space of the Yukawa matrices [54]:
$$\begin{aligned}&\Gamma _2 = \xi _{d}\, \mathrm {e}^{-i\theta } \,\Gamma _1 , \quad \Delta _2=\xi _{u}^*\, \mathrm {e}^{i\theta }\Delta _1 , \quad \Pi _2=\xi _\ell \, \mathrm {e}^{-i\theta } \,\Pi _1 , \nonumber \\&Y_{d,\ell }=\varsigma _{d,\ell }\, M_{d,\ell }, \quad Y_{u}=\varsigma ^*_{u}\, M_{u}, \quad \varsigma _{f} \equiv \frac{\xi _{f}-\tan {\beta }}{1+\xi _{f}\tan {\beta }}, \end{aligned}$$
(2.13)
where \(\xi _{f}\) (\(\varsigma _{f}\)) are arbitrary complex parameters and could introduce new sources of CP violation beyond that of the CKM matrix.
The interactions of the charged scalar with the fermion mass-eigenstate fields then read
$$\begin{aligned} \mathcal {L}_{H^\pm }= & {} - \frac{\sqrt{2}}{v}\, H^+\, \{\bar{u} [\varsigma _{d}\,V_{\mathrm {CKM}} M_{d} P_R - \varsigma _{u}\,M_{u}^{\dagger } V_{\mathrm {CKM}} P_{L}] d\nonumber \\&+ \varsigma _\ell \,\bar{\nu } M_\ell P_R \ell \}+ \mathrm {h.c.} , \end{aligned}$$
(2.14)
where \(P_{L(R)}\equiv (1\mp \gamma _5)/2\) is the left (right)-handed chirality projector, and \(V_{\mathrm {CKM}}\) the CKM matrix [55, 56]. Here we did not give the neutral scalar sector [54] in \(\mathcal {L}_Y\) or the FCNC local structures induced beyond tree level (quantum corrections) [64], because their effects are highly suppressed by the muon mass in the decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\). The usual NFC models [46, 52], with discrete \(\mathcal {Z}_2\) symmetries, are recovered for particular values of \(\varsigma _{f}\), as shown in Table 1.
Table 1

The one-to-one correspondence between different specific choices of the couplings \(\varsigma _{f}\) and the 2HDMs based on discrete \(\mathcal {Z}_2\) symmetries

Model

\(\varsigma _{d}\)

\(\varsigma _{u}\)

\(\varsigma _{\ell }\)

Type I

\(\cot {\beta }\)

\(\cot {\beta }\)

\(\cot {\beta }\)

Type II

\(-\tan {\beta }\)

\(\cot {\beta }\)

\(-\tan {\beta }\)

Type X

\(\cot {\beta }\)

\(\cot {\beta }\)

\(-\tan {\beta }\)

Type Y

\(-\tan {\beta }\)

\(\cot {\beta }\)

\(\cot {\beta }\)

Inert

0

0

0

3 \(\varvec{B^0\rightarrow K^{*0}\mu ^+\mu ^-}\) in the A2HDM

3.1 Effective weak Hamiltonian

The rare decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) proceeds through the loop diagrams both within the SM and in the A2HDM. When the heavy degrees of freedom, including the top quark, the weak gauge bosons, as well as the charged scalars, have been integrated out, we obtain the low-energy effective weak Hamiltonian governing the decay [6, 78]:
$$\begin{aligned} \mathcal {H}_{\mathrm {eff}}=-\frac{4G_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}\sum _{i}(C_{i}O_{i} +C_{i}^{\prime }O_{i}^{\prime }), \end{aligned}$$
(3.1)
where \(G_{F}\) is the Fermi coupling constant. Here we neglect the doubly Cabibbo-suppressed contributions to Eq. (3.1) (proportional to \(V_{ub}V_{us}^{*}\)), and we focus only on the operators [6]
$$\begin{aligned} O_7&= \frac{e}{16\pi ^2}\bar{m}_{b}(\bar{s}\sigma ^{\mu \nu }P_Rb)F_{\mu \nu }, \quad O^{\prime }_7 = \frac{e}{16\pi ^2}\bar{m}_{b}(\bar{s}\sigma ^{\mu \nu }P_{L}b)F_{\mu \nu }, \end{aligned}$$
(3.2)
$$\begin{aligned} O_9&= \frac{e^2}{16\pi ^2}(\bar{s}\gamma ^\mu P_{L}b)(\bar{\mu }\gamma _\mu \mu ), \quad O^{\prime }_9 = \frac{e^2}{16\pi ^2}(\bar{s}\gamma ^\mu P_Rb)(\bar{\mu }\gamma _\mu \mu ), \end{aligned}$$
(3.3)
$$\begin{aligned} O_{10}&= \frac{e^2}{16\pi ^2}(\bar{s}\gamma ^\mu P_{L}b)(\bar{\mu }\gamma _\mu \gamma _5 \mu ), \quad O^{\prime }_{10} = \frac{e^2}{16\pi ^2}(\bar{s}\gamma ^\mu P_Rb)(\bar{\mu }\gamma _\mu \gamma _5 \mu ), \end{aligned}$$
(3.4)
where \(\bar{m}_{b}=\bar{m}_{b}(\mu )\) denotes the b-quark running mass in the \(\mathrm {\overline{MS}}\) scheme.

Within the SM, the electromagnetic dipole operator \(O_7\) and the semileptonic operators \(O_{9,10}\) play the leading role in the decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\). Besides modifying the values of the SD Wilson coefficients \(C_{7,9,10}\), the charged-scalar contributions could also make the chirality-flipped operators \(O_{7,9,10}^{\prime }\) defined above to contribute in a significant manner, especially in some regions of the parameter spaces discussed later.

The SD Wilson coefficients \(C_i(\mu )\) and \(C_i^{\prime }(\mu )\) can be obtained firstly at the matching scale \(\mu _{W}\sim M_{W}\) perturbatively, by requiring equality of the one-particle irreducible Green functions calculated in the full and in the effective theory [78]. Using the renormalization group equation, one can then get \(C_i(\mu )\) and \(C_i^{\prime }(\mu )\) at the lower scale \(\mu _{b}\sim m_{b}\). During the calculation, the limit \(\bar{m}_{u,c}\rightarrow 0\) and the unitarity of the CKM matrix have been used. For simplicity, we introduce the mass ratios:
$$\begin{aligned} x_{t}=\frac{\bar{m}^2_{t}(\mu _{W})}{M^2_{W}},\quad y_{t}=\frac{\bar{m}^2_{t}(\mu _{W})}{M^2_{H^\pm }}. \end{aligned}$$
(3.5)
Details of the computational method could be found, for example, in Refs. [70, 78].

3.2 Wilson coefficients in the SM

In the SM, the one-loop penguin and box diagrams have been calculated both in the Feynman (\(\xi =1\)) and in the unitary (\(\xi =\infty \)) gauge [79, 80, 81, 82, 83, 84, 85, 86, 87], denoted by the subscript ‘F’ and ‘U’, respectively. The different contributions to \(C_i^{\mathrm {SM}}(\mu _{W})\) can be split into the following forms:
$$\begin{aligned} C_{7}^{\mathrm {SM}}= & {} C_{7}^{\gamma \text {-penguin}},\end{aligned}$$
(3.6)
$$\begin{aligned} C_{9}^{\mathrm {SM}}= & {} C_{9}^{W\text {-box}}+C_{9}^{Z\text {-penguin}}+C_{9}^{\gamma \text {-penguin}},\end{aligned}$$
(3.7)
$$\begin{aligned} C_{10}^{\mathrm {SM}}= & {} C_{10}^{W\text {-box}}+C_{10}^{Z\text {-penguin}}, \end{aligned}$$
(3.8)
where the corresponding parts resulting from the W-box, Z-penguin and \(\gamma \)-penguin diagrams are given, respectively, by
$$\begin{aligned} C_{9,{\mathrm{F(U)}}}^{W\text {-box}}&= -\frac{B_{0,{\mathrm{F(U)}}}}{\sin ^{2}\theta _{W}}, \quad C_{10,{\mathrm{F(U)}}}^{W\text {-box}} = \frac{B_{0,{\mathrm{F(U)}}}}{\sin ^{2}\theta _{W}}, \end{aligned}$$
(3.9)
$$\begin{aligned} C_{9,{\mathrm{F(U)}}}^{Z\text {-penguin}}&= \left( -4+\frac{1}{\sin ^{2}\theta _{W}}\right) C_{0,{\mathrm{F(U)}}}, \quad C_{10,{\mathrm{F(U)}}}^{Z\text {-penguin}} = -\frac{C_{0,{\mathrm{F(U)}}}}{\sin ^{2}\theta _{W}}, \end{aligned}$$
(3.10)
$$\begin{aligned} C_{7,{\mathrm{F(U)}}}^{\gamma \text {-penguin}}&= -\frac{1}{2}D_{0,{\mathrm{F(U)}}}', \quad C_{9,{\mathrm{F(U)}}}^{\gamma \text {-penguin}} = -D_{0,{\mathrm{F(U)}}}+\frac{4}{9}, \end{aligned}$$
(3.11)
where \(\theta _W\) is the Weinberg mixing angle, and the Inami–Lim functions [79] are defined as
$$\begin{aligned}&B_{0,\mathrm{F}}=F_{1}\left( x_{t}\right) ,\quad C_{0,\mathrm{F}}=F_{3}\left( x_{t}\right) ,\quad D_{0,\mathrm{F}}'=F_{6}\left( x_{t}\right) ,\quad \nonumber \\&\quad D_{0,\mathrm{F}}=-\frac{4}{9}F_{0}\left( x_{t}\right) +F_{5}\left( x_{t}\right) , \end{aligned}$$
(3.12)
in the Feynman gauge, and
$$\begin{aligned} B_{0,\mathrm{U}}&= -\frac{x_{t}}{16}L_{\epsilon }+F_{4}\left( x_{t}\right) , \quad \nonumber \\ C_{0,{U}}&= -\frac{x_{t}}{16}L_{\epsilon } -F_{1}\left( x_{t}\right) +F_{3}\left( x_{t}\right) +F_{4}\left( x_{t}\right) ,\nonumber \\ D_{0,\mathrm{U}}'&= F_{6}\left( x_{t}\right) ,\nonumber \\ D_{0,\mathrm{U}}&= \frac{x_{t}}{4}L_{\epsilon }-\frac{4}{9}F_{0}\left( x_{t}\right) +4F_{1}\left( x_{t}\right) -4F_{4}\left( x_{t}\right) +F_{5}\left( x_{t}\right) , \end{aligned}$$
(3.13)
in the unitary gauge. Here we introduce the notation \(L_{\epsilon }\equiv \frac{1}{\epsilon }+\log \left( \frac{\mu _{W}^{2}}{M_{W}^{2}}\right) \), where \(\epsilon =(4-d)/2\) is the dimensional regulator of ultraviolet divergence. Explicit expressions of the basic functions \(F_i(x)\) are given by Eqs. (A.1)–(A.9). While each piece on the right-hand side of Eqs. (3.7) and (3.8) depends obviously on \(\epsilon \) in the unitary gauge, due to the longitudinal components of the \(W^\pm \), \(Z^0\) and off-shell photon propagators, the physical quantities \(C^{\mathrm {SM}}_{7,9,10}\) are indeed free of \(\epsilon \) and are independent of the EW gauge fixings. For a recent review of higher-order corrections to \(C^{\mathrm {SM}}_{7,9,10}\), the reader is referred to Ref. [88].

3.3 Wilson coefficients in the A2HDM

In the A2HDM, the charged-scalar exchanges lead to additional contributions to \(C_{7,9,10}\) and could also make the chirality-flipped operators \(O^{\prime }_{7,9,10}\) to contribute in a significant manner, through the \(Z^0\)- and \(\gamma \)-penguin diagrams shown in Fig. 1. Since we have neglected the light lepton mass, there is no contribution from the SM W-box diagrams with the \(W^{\pm }\) bosons replaced by the charged scalars \(H^{\pm }\).
Fig. 1

Z- and \(\gamma \)-penguin diagrams involving the charged-scalar exchanges in the A2HDM

For each Feynman diagram shown in Fig. 1, the contributions are identical in the two gauges. The total Wilson coefficients \(C_{7,9,10}\) are split into two parts, one is from the SM contributions \(C_{7,9,10}^\mathrm {SM}\), and the other from the charged-scalar ones \(C_{7,9,10}^\mathrm {H^\pm }\). For the chirality-flipped operators, \(C_{7,9,10}^{\prime }=C_{7,9,10}^{\prime \mathrm {H^\pm }}\), because the SM contributions are well suppressed by the factor \(\bar{m}_{s}/\bar{m}_{b}\). For convenience, we decompose these new contributions in such a way as to render explicit their dependence on the couplings \(\varsigma _{u}\) and \(\varsigma _{d}\):
$$\begin{aligned} C_{7}^\mathrm {H^\pm }&=\left| \varsigma _{u}\right| ^{2}C_{7,\,\mathrm {uu}} +\varsigma _{d}\varsigma _{u}^{*}C_{7,\,\mathrm {ud}}, \end{aligned}$$
(3.14)
$$\begin{aligned} C_{9}^\mathrm {H^\pm }&=\left| \varsigma _{u}\right| ^{2}C_{9,\,\mathrm {uu}}, \end{aligned}$$
(3.15)
$$\begin{aligned} C_{10}^\mathrm {H^\pm }&=\left| \varsigma _{u}\right| ^{2}C_{10,\,\mathrm {uu}}, \end{aligned}$$
(3.16)
$$\begin{aligned} C_{7}^{\prime \mathrm {H^\pm }}&=\frac{\bar{m}_{s}}{\bar{m}_{b}}\left( \left| \varsigma _{u}\right| ^{2}C_{7,\,\mathrm {uu}} +\varsigma _{u}\varsigma _{d}^{*}C_{7,\,\mathrm {ud}}\right) , \end{aligned}$$
(3.17)
$$\begin{aligned} C_{9}^{\prime \mathrm {H^\pm }}&=\left( -1+4\sin ^{2}\theta _{W}\right) C_{10}^{\prime \mathrm {H^\pm }}\nonumber \\&\quad +\frac{\bar{m}_{b}\bar{m}_{s}}{M_{W}^{2}}[\left| \varsigma _{u}\right| ^{2}C_{9,\,\mathrm {uu}}' +2\mathfrak {R}\left( \varsigma _{u}\varsigma _{d}^{*}\right) C_{9,\,\mathrm {ud}}'\nonumber \\&\quad +\left| \varsigma _{d}\right| ^{2}C_{9,\,\mathrm {dd}}'], \end{aligned}$$
(3.18)
$$\begin{aligned} C_{10}^{\prime \mathrm {H^\pm }}&=\frac{\bar{m}_{b}\bar{m}_{s}}{M_{W}^{2}}[\left| \varsigma _{u}\right| ^{2}C_{10,\,\mathrm {uu}}' +2\mathfrak {R}\left( \varsigma _{u}\varsigma _{d}^{*}\right) C_{10,\,\mathrm {ud}}'\nonumber \\&\quad +\left| \varsigma _{d}\right| ^{2} C_{10,\,\mathrm {dd}}'], \end{aligned}$$
(3.19)
where the coefficients of the different combinations of the couplings \(\varsigma _{u}\) and \(\varsigma _{d}\) are given by Eqs. (B.1)–(B.10). In the particular cases of type II and type Y 2HDMs with large \(\tan \beta \), the only terms enhanced by a factor \(\tan ^2\beta \) originate from the \(\left| \varsigma _{d}\right| ^2\) part contributing only to \(C_{9,10}^{\prime \mathrm {H^\pm }}\). The Wilson coefficients \(C_{7,9,10}^{(\prime )\mathrm {H^\pm }}\) are found to be invariant under a global U(1) transformation, \(\varsigma _{u}\rightarrow \mathrm {e}^{i\chi }\varsigma _{u}\) and \(\varsigma _{d}\rightarrow \mathrm {e}^{i\chi }\varsigma _{d}\). This invariance is well anticipated, since it corresponds to an unphysical phase transformation of the second Higgs doublet, \(\Phi _2\rightarrow \mathrm {e}^{i\chi }\Phi _2\), a leftover freedom in the Higgs basis [75, 76]. There is an implicit \(\mu _{W}\) dependence via the sbt-quark masses, which depend on the precise definitions and have to be specified when going beyond the leading logarithm (LL). As we evaluate \(C_{7,9,10}^{(\prime )\mathrm {H^\pm }}\) only at the leading order (LO) in \(\alpha _{s}\), whether the running masses \(\bar{m}_q(\mu _{W})\) or the pole masses \(m_q\) are used does not matter too much. As a consequence, we choose the pole masses \(m_q\) as input in Eqs. (3.17)–(3.19).

Our results for the chirality-flipped Wilson coefficients \(C_{7,9,10}^{\prime \mathrm {H^\pm }}\) are presented for the first time in the A2HDM. In the particular cases of the \(\mathcal {Z}_2\) symmetric 2HDMs, our results agree with the ones calculated in Refs. [89, 90, 91, 92]. It is also noted that the next-to-leading order QCD corrections to \(C_{7,9,10}^\mathrm {H^\pm }\) in the supersymmetry and type-II 2HDM have already been calculated in Refs. [93, 94, 95, 96, 97].

3.4 Angular observables in \({B^0\rightarrow K^{*0}\mu ^+\mu ^-}\) decay

The angular distribution of the \(B^0\rightarrow K^{*0}(\rightarrow K^+\pi ^-)\mu ^+\mu ^-\) decay is described by the dimuon invariant mass squared \(q^2\) as well as the three angles \(\theta _\ell \), \(\theta _{K^*}\) and \(\phi \), where \(\theta _\ell \) is defined as the angle between the flight direction of the \(\mu ^+\,(\mu ^-)\) and the opposite direction of the \(B^0\,(\bar{B}^0)\) in the rest frame of the dimuon system, and \(\theta _{K^*}\) the angle between the flight direction of the \(K^+\,(K^-)\) and that of the \(B^0\,(\bar{B}^0)\) in the \(K^{*0}\,(\bar{K}^{*0})\) rest frame, while \(\phi \) is the angle between the plane containing the dimuon pair and the plane containing \(K^+\) and \(\pi ^-\) mesons in the \(B^0\,(\bar{B}^0)\) rest frame. In terms of these four kinematic variables, the full angular decay distribution of the decay is then given by [6, 98]
$$\begin{aligned}&\frac{\mathrm{d}^4 \bar{\Gamma }[B^0\rightarrow K^{*0}\mu ^+\mu ^-]}{\mathrm{d}q^2\, \mathrm{d}\cos \theta _\ell \, \mathrm{d}\cos \theta _{K^*}\, \mathrm{d}\phi }\nonumber \\&\quad =\frac{9}{32\pi }[ \bar{I}_1^s \sin ^2\theta _{K^*} + \bar{I}_1^c \cos ^2\theta _{K^*} \nonumber \\&\qquad + (\bar{I}_2^s \sin ^2\theta _{K^*} + \bar{I}_2^c \cos ^2\theta _{K^*}) \cos 2\theta _\ell \nonumber \\&\qquad + \bar{I}_3 \sin ^2\theta _{K^*} \sin ^2\theta _\ell \cos 2\phi + \bar{I}_4 \sin 2\theta _{K^*} \sin 2\theta _\ell \cos \phi \nonumber \\&\qquad + \bar{I}_5 \sin 2\theta _{K^*} \sin \theta _\ell \cos \phi \nonumber \\&\qquad + \bar{I}_6^s \sin ^2\theta _{K^*} \cos \theta _\ell + \bar{I}_7 \sin 2\theta _{K^*} \sin \theta _\ell \sin \phi \nonumber \\&\qquad + \bar{I}_8 \sin 2\theta _{K^*} \sin 2\theta _\ell \sin \phi + \bar{I}_9 \sin ^2\theta _{K^*} \sin ^2\theta _\ell \sin 2\phi ], \end{aligned}$$
(3.20)
where the angular coefficients \(\bar{I}_i^{(a)}\) are functions of \(q^2\) only, and the relations \(\bar{I}_1^s=3\bar{I}_2^s\), \(\bar{I}_1^c=-\bar{I}_2^c\) and \(\bar{I}_6^c=0\) hold when the muon mass is neglected. The corresponding expression for the CP-conjugated mode \(\bar{B}^0\rightarrow \bar{K}^{*0}(\rightarrow K^-\pi ^+)\mu ^+\mu ^-\) is obtained from Eq. (3.20) by the replacements \(\bar{I}_i^{(a)} \rightarrow I_i^{(a)}\) [6, 98]. Explicit forms of the angular coefficients \(\bar{I}_i^{(a)}~(I_i^{(a)})\) can be found, for example, in Refs. [6, 10, 16].
The self-tagging property of the decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) makes it possible to determine both the CP-averaged and the CP-asymmetric quantities defined, respectively, by [6]
$$\begin{aligned} S_i^{(a)}= & {} (I_i^{(a)}+\bar{I}_i^{(a)})/\left( \frac{\mathrm{d}\Gamma }{\mathrm{d}q^2}+\frac{\mathrm{d}\bar{\Gamma }}{\mathrm{d}q^2}\right) , \nonumber \\ A_i^{(a)}= & {} (I_i^{(a)}-\bar{I}_i^{(a)})/\left( \frac{\mathrm{d}\Gamma }{\mathrm{d}q^2}+\frac{\mathrm{d}\bar{\Gamma }}{\mathrm{d}q^2}\right) . \end{aligned}$$
(3.21)
The previously studied observables, such as the \(q^2\) distributions of the forward–backward asymmetry \(A_\mathrm{FB}\) and the CP asymmetry \(A_\mathrm{CP}\), can be expressed in terms of these angular observables.
With the structure of the amplitudes at large recoil, it is possible to build clean observables whose sensitivity to the \(B\rightarrow K^*\) transition form factors is suppressed by \(\alpha _{s}\) or \(\Lambda _\mathrm{QCD}/m_{b}\) [9]. These include the so-called \(P_i^{\prime }\) and \(P_i\) observables defined by [9, 99, 100]
$$\begin{aligned}&P_1=\frac{S_3}{2S_2^s},\quad P_2=\frac{S_6^s}{8S_2^s},\quad P_3=\frac{S_9}{4S_2^s},\end{aligned}$$
(3.22)
$$\begin{aligned}&P_4^{\prime }=\frac{S_4}{2\sqrt{-S_2^sS_2^c}},\quad P_5^{\prime }=\frac{S_5}{2\sqrt{-S_2^sS_2^c}},\nonumber \\&P_6^{\prime }=\frac{S_7}{2\sqrt{-S_2^sS_2^c}},\quad P_8^{\prime }=\frac{S_8}{2\sqrt{-S_2^sS_2^c}}. \end{aligned}$$
(3.23)
The numerical impact of charged-scalar contributions on some of these observables will be discussed in the next section.

4 Numerical results and discussions

4.1 Choice of the model parameters

For the considered decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\), only three model parameters, the charged-scalar mass \(M_{H^\pm }\) and the two alignment parameters \(\varsigma _{u}\) and \(\varsigma _{d}\), are involved. In the following we assume the parameters \(\varsigma _{u,d}\) to be real, indicating that the only source of CP violation in the A2HDM is still due to the CKM matrix. Following the previous studies, we now give the preset ranges of these model parameters:
  • The charged-scalar mass is assumed to lie in the range \(M_{H^{\pm }} \in [80,1000]~\mathrm {GeV}\), where the lower bound comes from the LEP direct search [101], while the upper bound from the unitarity and stability of the scalar potential [102, 103, 104, 105].

  • The alignment parameter \(\varsigma _{u}\) is assumed to lie in the range \(|\varsigma _{u}|\le 2\), to be compatible with the current data of loop-induced processes, such as \(Z\rightarrow b\bar{b}\), \(b\rightarrow s \gamma \), \(B_{s,d}^0\)\(\bar{B}_{s,d}^0\) mixings, as well as the h(125) decays [62, 63, 65, 66, 67, 68, 69].

  • The alignment parameter \(\varsigma _{d}\) is only mildly constrained through phenomenological requirements that involve additionally other model parameters. So we let it to be a free parameter.

  • In the 2HDMs with discrete \(\mathcal {Z}_2\) symmetries, the parameters \(\varsigma _{u}\) and \(\varsigma _{d}\) are not independent but are related to each other through the ratio of the VEVs \(\tan \beta =v_2/v_1\). The upper limit for \(\tan \beta \) also comes from the unitarity and stability of the scalar potential [102, 103, 104, 105]; we assume here \(\tan \beta \le 50\).

4.2 Constraints on the model parameters

For the other input parameters, we take \(M_Z=91.1876~\mathrm {GeV}\), \(M_{W}=80.385~\mathrm {GeV}\), \(m_{t}=(174.2\pm 1.4)~\mathrm {GeV}\), \(m_{b}=(4.78\pm 0.06)~\mathrm {GeV}\), and \(\bar{m}_{s}(2~\mathrm {GeV})=(96^{+8}_{-4})~\mathrm {MeV}\) [106]. Since \(C_7^{\prime \mathrm {H}^\pm }=\bar{m}_{s}/\bar{m}_{b} C_7^{\mathrm {H}^\pm }\) and \(\bar{m}_{s} \ll \bar{m}_{b}\), the contribution from \(O_7'\) will be safely neglected.

The Wilson coefficient \(C_7^{\mathrm {H}^\pm }\) is severely constrained by the inclusive decay \(B\rightarrow X_{s} \gamma \). The branching ratio of \(B\rightarrow X_{s} \gamma \) measured by CLEO [107], Belle [108, 109, 110] and BaBar [111, 112, 113], lead to the combined average [114]
$$\begin{aligned}&\mathcal {B}^{\mathrm {exp}}(B\rightarrow X_{s} \gamma )\big |_{E_\gamma >1.6~\mathrm {GeV}}\nonumber \\&\quad =\,(3.43\pm 0.21_\mathrm{stat.}\pm 0.07_\mathrm{syst.})\times 10^{-4}, \end{aligned}$$
(4.1)
which is in good agreement with the updated SM prediction [115]
$$\begin{aligned} \mathcal {B}^{\mathrm {SM}}(B\rightarrow X_{s} \gamma )\big |_{E_\gamma >1.6~\mathrm {GeV}}\, =\,\left( 3.36\pm 0.23\right) \times 10^{-4}.\nonumber \\ \end{aligned}$$
(4.2)
It should be noted that the chromomagnetic dipole operator \(O_8 = \frac{g_{s}}{16\pi ^2}\bar{m}_{b}\left( \bar{s}\sigma ^{\mu \nu }P_{R}T^a b\right) G_{\mu \nu }^a\) also plays an important role in the decay \(B\rightarrow X_{s} \gamma \). However, at the LO in \(\alpha _{s}\), this operator contributes to \(B\rightarrow X_{s} \gamma \) only via its mixing with \(O_7\). It is then found that, at the matching scale \(\mu _{W}=160~\mathrm {GeV}\), the Wilson coefficients \(C_7^{\mathrm {H}^\pm }\) and \(C_8^{\mathrm {H}^\pm }\) should fulfill the constraint [115]:
$$\begin{aligned} -0.0634\le C_7^{\mathrm {H}^\pm }\left( \mu _{W}\right) +0.242\,C_8^{\mathrm {H}^\pm }\left( \mu _{W}\right) \le 0.0464,\nonumber \\ \end{aligned}$$
(4.3)
where \(C_8^{\mathrm {H}^\pm }=\left| \varsigma _{u}\right| ^{2}C_{8,\,\mathrm {uu}}+\varsigma _{d}\varsigma _{u}^{*} C_{8,\,\mathrm {ud}}\) [89], with the functions \(C_{8,\,\mathrm {uu}}\) and \(C_{8,\,\mathrm {ud}}\) given, respectively, by Eqs. (B.11) and (B.12).
Fig. 2

The allowed regions in the \(\varsigma _{u}\)\(\varsigma _{d}\) plane (\(\varsigma _{d}>0\)) under the constraint from Eq. (4.3). The blue, red, and green bands correspond to \(M_{H^\pm }=80\), 300 and \(500~\mathrm {GeV}\), respectively

Under the constraint from Eq. (4.3), we show in Fig. 2 the allowed regions in the \(\varsigma _{u}\)\(\varsigma _{d}\) plane (\(\varsigma _{d}>0\)), with three representative values of the charged-scalar mass, \(M_{H^\pm }=80\), 300 and \(500~\mathrm {GeV}\) as benchmarks. The case with \(\varsigma _{d}<0\) is obtained from Fig. 2 with the changes \(\varsigma _{u}\rightarrow -\varsigma _{u}\) and \(\varsigma _{d}\rightarrow -\varsigma _{d}\). It is observed that the allowed range of \(\varsigma _{d}\) becomes quite large when \(\varsigma _{u}\) tends to 0; particularly, when \(\varsigma _{u}=0\), no constraint on \(\varsigma _{d}\) is obtained, because in this limit the SM result is recovered. When \(\varsigma _{d}=0\), on the other hand, a bound on \(\varsigma _{u}\) can be set with the allowed range of \(|\varsigma _{u}|\) further strengthened for smaller values of the charged-scalar mass. These qualitative observations are consistent with those observed previously in Refs. [64, 65, 66]. However, the allowed regions for \(\varsigma _{u}\) and \(\varsigma _{d}\) are further reduced compared to those obtained in Refs. [64, 65, 66], because the updated SM prediction (cf. Eq. (4.2)) becomes now more compatible with the current experimental data (cf. Eq. (4.1)). It is also found that the preset maximum value \(\left| \varsigma _{u}\right| =2\) is reached when \(\left| \varsigma _{d}\right| \) varies within a range away from 0, rather than at \(\varsigma _{d}=0\); for example, taking \(M_{H^\pm }=80~\mathrm {GeV}\), we find that \(\left| \varsigma _{u}\right| \) approaches 2 when \(0.6<\left| \varsigma _{d}\right| <0.8\). This novel observation motivates us to display the \(\varsigma _{d}\)-axis in the logarithmic coordinate, making clear the correlation between \(\varsigma _{u}\) and \(\varsigma _{d}\) in the range \(\left| \varsigma _{d}\right| <1\). The inversely proportional and parabolic boundary curves in the first quadrant indicate that the NP contribution to \(C_{7}^\mathrm {H^\pm }\) (cf. Eq. (3.14)) is dominated by the \(\varsigma _{d}\varsigma _{u}^*\) and \(\left| \varsigma _{u}\right| ^2\) terms, respectively. As the large same-sign solutions for \(\varsigma _{u}\) and \(\varsigma _{d}\) obtained in Refs. [64, 65], corresponding to the case when the NP influence is about twice the size of the SM contribution but with an opposite sign, are already excluded by the isospin asymmetry of \(B\rightarrow K^*\gamma \) decays [66, 116], they are not shown in Fig. 2.

Motivated by the latest LHCb and Belle measurements of \(b \rightarrow s \ell ^+\ell ^-\) decays, there exist several global fits for the NP contributions to the Wilson coefficients \(C_{9,10}^{(\prime )}\) [18, 19, 20, 29]. We use two of these global fit results to further constrain the A2HDM parameters. One is obtained from the combined fit to the \(b\rightarrow s\, (\mu ^+\mu ^-, \gamma )\) mesonic decays (at \(\mu _{b}=4.8~\mathrm {GeV}\)) [19]:
$$\begin{aligned} -2.2&\le C_9^{\mathrm {NP}}\,\le \,-0.4,&-0.5\,\le \,&C_{10}^{\mathrm {NP}}\,\le \,2.0,\nonumber \\ -1.3&\le C_9^{\prime \mathrm {NP}}\,\le \,3.7,&-1.0\,\le \,&C_{10}^{\prime \mathrm {NP}}\,\le \,1.6, \end{aligned}$$
(4.4)
given at the \(3\sigma \) level. This fit includes the branching ratios and optimized angular observables of \(B\rightarrow K^*\mu ^+\mu ^-\) and \(B_{s}\rightarrow \phi \mu ^+\mu ^-\), the branching ratios of \(B\rightarrow K\mu ^+\mu ^-\), the branching ratios of \(B\rightarrow X_{s}\mu ^+\mu ^-\) (restricted only to the range \(1~\mathrm {GeV}^2\le q^2\le 6~\mathrm {GeV}^2\)) and \(B\rightarrow X_{s}\gamma \), the branching ratio of \(B_{s}\rightarrow \mu ^+\mu ^-\), as well as the isospin asymmetry and the time-dependent CP asymmetry of \(B\rightarrow K^*\gamma \). Furthermore, both the large- and the low-recoil data are included for the exclusive \(b\rightarrow s\mu ^+\mu ^-\) decays, resulting in nearly a hundred observables in total in the analysis [19]. The other global fit includes, besides the time-integrated branching ratio of \(B_{s}\rightarrow \mu ^+\mu ^-\) and the branching ratio of \(B\rightarrow X_{s}\ell ^+\ell ^-\) integrated over the range \(1~\mathrm {GeV}^2\le q^2\le 6~\mathrm {GeV}^2\), the currently available data on \(\Lambda _{b}\rightarrow \Lambda (\rightarrow p\pi ^-)\,\mu ^+\mu ^-\) decay, which involves the branching ratio, the rate of longitudinally polarized lepton pair, as well as the leptonic and the hadronic forward–backward asymmetries; numerically, this fit gives (at \(\mu _{b}=4.2~\mathrm {GeV}\)) [29]
$$\begin{aligned} 0.9\,\le \,&C_9^{\mathrm {NP}}\,\le \,2.5,&1.8\,\le \,&C_{10}^{\mathrm {NP}}\,\le \,4.2,\nonumber \\ -1.3\,\le \,&C_9^{\prime \mathrm {NP}}\,\le \,1.8,&1.0\,\le \,&C_{10}^{\prime \mathrm {NP}}\,\le \,3.1, \end{aligned}$$
(4.5)
at the \(1\sigma \) level. It is interesting to note that the latter prefers a shift to \(C_9\) that is opposite in sign compared to the former [29]. Since the Wilson coefficients \(C_{9,10}^{\mathrm {H^\pm }}(\mu _{W})\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}(\mu _{W})\) are calculated only at the LO, they should be evolved to the lower scale \(\mu _{b}\) at the LL approximation, which means that they are actually not running [117]. Thus, we can apply directly the bounds given by Eqs. (4.4) and (4.5) to \(C_{9,10}^{\mathrm {H^\pm }}\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\). To be more conservative, we require each of these coefficients to lie within the smaller lower and bigger upper bounds of these two global fits. Using these bounds as well as the constraint from Eq. (4.3), we find that the allowed parameter space in the \(\varsigma _{u}\)\(\varsigma _{d}\) plane are significantly reduced, especially for the model parameter \(\varsigma _{u}\), as shown in Fig. 3. This means that \(C_{9,10}^\mathrm {H^\pm }\) play a major role in the small \(\left| \varsigma _{d}\right| \) region (\(\left| \varsigma _{d}\right| <1\)) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) can be quite sizable when \(\varsigma _{u}\) approaches 0.
Fig. 3

The allowed regions in the \(\varsigma _{u}\)\(\varsigma _{d}\) plane (\(\varsigma _{d}>0\)) under the constraint from Eq. (4.3) as well as the bounds on \(C_{9,10}^{\mathrm {H^\pm }}\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) from Eqs. (4.4) and (4.5). The other captions are the same as in Fig. 2

Fig. 4

The allowed regions in the \(\varsigma _{d}\)\(M_{H^\pm }\) plane when \(\varsigma _{u}=0\) (a) and in the \(\varsigma _{u}\)\(M_{H^\pm }\) plane when \(\varsigma _d=0\) (b), under the constraint from Eq. (4.3) as well as the bounds on \(C_{9,10}^{\mathrm {H^\pm }}\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) from Eqs. (4.4) and (4.5)

Fig. 5

Correlations among the five Wilson coefficients using the allowed values of \(\varsigma _{u}\) and \(\varsigma _{d}\) with three benchmark values of charged-scalar mass obtained in the previous subsection. The other captions are the same as in Fig. 2

It is also interesting to note that, under the constraint from Eq. (4.3) as well as the bounds on \(C_{9,10}^{\mathrm {H^\pm }}\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) from Eqs. (4.4) and (4.5), we could obtain a bound on \(\varsigma _{d}\) even when \(\varsigma _{u}\) equals 0. Such a bound arises entirely from the information on \(C_{9,10}^{\prime \mathrm {H^\pm }}\) due to the \(\left| \varsigma _{d}\right| ^2\) terms in these two Wilson coefficients (cf. Eqs. (3.18) and (3.19)). For illustration, the allowed regions in the \(\varsigma _{d}\)\(M_{H^\pm }\) plane when \(\varsigma _{u}=0\) and in the \(\varsigma _{u}\)\(M_{H^\pm }\) plane when \(\varsigma _{d}=0\) are shown in Fig. 4. Numerically, we obtain \(\left| \varsigma _{u}\right| \le 0.506\), 0.763 and 0.990, and \(\left| \varsigma _{d}\right| \le 212\), 476 and 622, corresponding to \(M_{H^\pm }=80\), 300 and \(500~\mathrm {GeV}\), respectively. This means that the more accurate \(C_{9,10}^{\prime \mathrm{NP}}\) can be better used to restrict the parameter \(\varsigma _{d}\).

4.3 \(P_2\) and \(P_5'\) in the A2HDM

In this subsection, with the constrained parameter space for \(\varsigma _{u}\) and \(\varsigma _{d}\), we investigate the impact of A2HDM on the angular observables \(P_2\) and \(P_5'\) in the decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\). As there are involved only three model parameters \(\varsigma _{u}\), \(\varsigma _{d}\) and \(M_{H^\pm }\) in Eqs. (3.14)–(3.19), the five Wilson coefficients (\(C_7^{\prime \mathrm {H^\pm }}\) is neglected because \(\bar{m}_{s} \ll \bar{m}_{b}\)) are expected to be highly correlated with each other. Using the allowed values of \(\varsigma _{u}\) and \(\varsigma _{d}\) with three benchmark values of charged-scalar mass obtained in the previous subsection, we show in Fig. 5 the correlations among these five Wilson coefficients. One can see that, while \(C_7^\mathrm {H^\pm }\) is hardly correlated with the other four Wilson coefficients (Fig. 5a–d), \(C_9^\mathrm {H^\pm }\) and \(C_{10}^\mathrm {H^\pm }\) are obviously linearly correlated with each other and the slope depends only on the charged-scalar mass \(M_{H^\pm }\) (Fig. 5e), with the blue, red, and green lines obtained with \(M_{H^\pm }=80\), 300, and \(500~\mathrm {GeV}\), respectively. In addition, \(C_9^{\prime \mathrm {H^\pm }}\) and \(C_{10}^{\prime \mathrm {H^\pm }}\) are found to be approximately linearly correlated with each other (Fig. 5f), and the slope starts to be nearly a constant when \(M_{H^\pm }\ge 250~\mathrm {GeV}\), which explains why the two lines with \(M_{H^\pm }=300\) and \(500~\mathrm {GeV}\) almost overlap completely in Fig. 5f. In fact, from the analytic expressions for these Wilson coefficients (cf. Eqs. (3.15)–(3.16) and (3.18)–(3.19), together with (B.3)–(B.10)), we find that \(C_{9}^\mathrm {H^\pm }/C_{10}^\mathrm {H^\pm }\rightarrow -1+4\sin ^{2}\theta _{W}\,\left[ 1+4/(9x_{t})\right] \) and \(C_{9}^{\prime \mathrm {H^\pm }}/C_{10}^{\prime \mathrm {H^\pm }}\rightarrow -1+4\sin ^{2}\theta _{W}\) when \(M_{H^\pm }\) goes to infinity. This explains why the lines shown in Fig. 5e, f get closer to each other with larger \(M_{H^\pm }\).

The most interesting results are shown in Fig. 5g–j, which suggest that the charged scalars cannot affect the left- and right-handed semileptonic operators at the same time, under the constraints shown in Figs. 2 and 3. According to Eqs. (3.15) and (3.16), sizable \(C_{9,10}^\mathrm {H^\pm }\) need a large \(\left| \varsigma _{u}\right| \), which in turn implies that \(\left| \varsigma _{d}\right| \) cannot be too large due to the constraints shown in Figs. 2 and 3. Together with the small factor \(\bar{m}_{b}\bar{m}_{s}/M_{W}^2\) and the preset range \(\left| \varsigma _{u}\right| \le 2\), this renders the coefficients \(C_{9,10}^{\prime \mathrm {H^\pm }}\) quite small (cf. Eqs. (3.18)–(3.19)). The same argument applies to the opposite case: sizable \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are possible only with a large \(\left| \varsigma _{d}\right| \), which then implies a small \(\left| \varsigma _{u}\right| \), resulting in quite small \(C_{9,10}^\mathrm {H^\pm }\). These qualitative analyses explain the strong correlations observed in Fig. 5g–j, and motivate us to consider the following two specific cases for the NP Wilson coefficients:
$$\begin{aligned}&\text {Case} \,A{:}\, C_{7,9,10}^\mathrm {H^\pm }\, \text {are sizable, but}\, C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0; \end{aligned}$$
(4.6)
$$\begin{aligned}&\text {Case} \,B{:}\, C_7^\mathrm {H^\pm } \,\text {and}\, C_{9,10}^{\prime \mathrm {H^\pm }} \,\text {are sizable, but}\, C_{9,10}^\mathrm {H^\pm }\simeq 0. \end{aligned}$$
(4.7)
They are associated to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) and (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) regions, respectively.
Fig. 6

The \(q^2\) dependence of the angular observables \(P_2\) and \(P_5'\), both within the SM (central value by a red curve and its uncertainty by a yellow band) and in the A2HDM (the green and blue bands correspond to the case A and case B, respectively). The experimental data from the LHCb [11, 16], Belle [17] and BaBar [118] collaborations are represented by the corresponding error bars in different \(q^2\) bins

In Fig. 6, we show our predictions for the two angular observables \(P_2\) and \(P_5'\) at large recoil both within the SM and in the A2HDM, with the Wilson coefficients obtained in the above two cases, together with the experimental data from the LHCb [11, 16], Belle [17] and BaBar [118] collaborations. Here we follow closely the method used in Refs. [6, 13, 18]: Firstly, we take as input the combined LCSR-lattice fit results for the \(B\rightarrow K^*\) transition form factors provided in Ref. [13], which allow us to retain all the correlated uncertainties among these form factors. Secondly, we have included the hadronic uncertainties due to non-factorizable power corrections associated with the non-perturbative charm loops [13, 30], the latest discussions of which could be found in Refs. [119, 120]. Finally, these two angular observables are computed within the SM, with their respective uncertainties obtained by adding in quadrature the individual uncertainty due to the \(B\rightarrow K^*\) form factors, the non-factorizable charm-loop contributions, and the parametric input (mainly from \(m_{b}(\bar{m}_{b})=4.18^{+0.04}_{-0.03}\,\mathrm{GeV}\) and \(m_c=1.4\pm 0.2\,\mathrm{GeV}\)). For the NP contributions, however, we consider only the uncertainties of the model parameters and perform a random flat scan within their allowed regions. One can see clearly that there is only a small impact on \(P_2\) and \(P_5'\) in case A, where the chirality-flipped operators \(O'_{9,10}\) are absent, while in case B \(P_5'\) could be increased significantly to be consistent with the experimental data and reduce \(P_2\) when the dimuon invariant mass squared \(q^2\) is higher than the zero-crossing point \(q_0^2\). Numerical results for the zero-crossing points of \(P_2\) (nonzero one) and \(P_5'\) are given in Table 2, both within the SM and in the A2HDM. It is observed that the impact on \(q_0^2\) in case B is more pronounced than in case A.
Table 2

The zero-crossing points of \(P_2\) (nonzero one) and \(P_5'\) both within the SM and in the A2HDM

 

SM

Case A

Case B

\(q^2_0(P_2)\)

\(3.43^{+0.33}_{-0.32}\)

\((3.02,\,3.90)\)

\((3.02,\,4.79)\)

\(q^2_0(P_5')\)

\(2.02^{+0.19}_{-0.15}\)

\((1.77,\,2.32)\)

\((1.79,\,4.85)\)

4.4 2HDMs with \(\mathcal {Z}_2\) symmetries

In the generic 2HDMs with discrete \(\mathcal {Z}_2\) symmetries, the three alignment parameters \(\varsigma _{f}\) will be reduced to a single parameter \(\tan \beta =v_2/v_1\ge 0\), as indicated in Table 1. There are, therefore, only two model parameters, \(\tan \beta \) and \(M_{H^\pm }\), in the Wilson coefficients \(C_{7,9,10}^{(\prime )\mathrm {H^\pm }}\). We show in Fig. 7 the allowed regions in the \(\tan \beta \)\(M_{H^\pm }\) plane corresponding to the four different types of 2HDMs with \(\mathcal {Z}_2\) symmetries. As \(C_{7,9,10}^{(\prime )\mathrm {H^\pm }}\) do not depend on the parameter \(\varsigma _\ell \), the type I (II) and type X (Y) models are indistinguishable from each other. However, one can clearly distinguish types I and X from types II and Y models. As shown in Fig. 7, the bound \(M_{H^\pm }>432\,\mathrm{GeV}\) is obtained for types II and Y 2HDMs, while there is no further bound found for \(M_{H^\pm }\) in types I and X 2HDMs with sizable \(\tan \beta \).

Fig. 7

Allowed regions in the \(\tan \beta -M_{H^\pm }\) plane corresponding to different \(\mathcal {Z}_2\)-symmetric 2HDMs, under the constraint from Eq. (4.3) as well as the bounds on \(C_{9,10}^{\mathrm {H^\pm }}\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) from Eqs. (4.4) and (4.5)

Fig. 8

The \(q^2\) dependence of the angular observables \(P_2\) and \(P_5'\) in the types I and X (the green band) and the types II and Y (the blue band) 2HDMs. The other captions are the same as in Fig. 6.

With the constrained model parameters shown in Fig. 7, we then show in Fig. 8 the \(q^2\) dependence of \(P_2\) and \(P_5'\) in the four different types of 2HDMs with \(\mathcal {Z}_2\) symmetries. One can see that, compared with the SM predictions, both \(P_2\) and \(P_5'\) are reduced in the types I and X (the green band), but increased in the types II and Y (the blue band) 2HDMs, only by a small amount. This is because the charged-scalar effect on the left- and right-handed semileptonic operators is controlled by the same parameter \(\tan \beta \) and, under the constraint shown in Fig. 7, sizable \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are not allowed in these models. It is, therefore, concluded the 2HDMs with \(\mathcal {Z}_2\) symmetries cannot explain the so-called \(P_5'\) anomaly.

5 Conclusions

In this paper, we have presented a complete one-loop calculation of the SD Wilson coefficients \(C_{7,9,10}^{(\prime )\mathrm {H^\pm }}\) due to the charged-scalar exchanges through the \(Z^0\)- and \(\gamma \)-penguin diagrams within the A2HDM. For \(C_{9,10}^{\prime \mathrm {H^\pm }}\), although being suppressed by the factor \(\bar{m}_{b}\,\bar{m}_{s}/M_{W}^2\), they could play an important role in interpreting the observed \(P_5'\) anomaly in the decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\), when the model parameter \(|\varsigma _{d}|\) is large.

Under the constraints from the branching ratio \(\mathcal {B}(B\rightarrow X_{s}\gamma )\) and the recent global fit results of \(b\rightarrow s\ell ^+\ell ^-\) data, we have obtained the allowed parameter spaces in the \(\varsigma _{u}\)\(\varsigma _{d}\) plane, corresponding to three representative charged-scalar masses. We found that \(C_{9,10}^\mathrm {H^\pm }\) play a major role in the small \(\left| \varsigma _{d}\right| \) region (\(\left| \varsigma _{d}\right| <1\)), while \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are most important when the model parameter \(\varsigma _{u}\) approaches 0. When \(\varsigma _{u}\) is far away from 0 and \(\left| \varsigma _{d}\right| \ge 1\), on the other hand, the impact of \(C_{7}^\mathrm {H^\pm }\) will become more significant. Within the constrained parameter space, numerically, the effects of these NP Wilson coefficients can be divided into the following two cases: (A) \(C_{7,9,10}^\mathrm {H^\pm }\) are sizable, but \(C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0\), corresponding to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) region; (B) \(C_7^\mathrm {H^\pm }\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are sizable, but \(C_{9,10}^\mathrm {H^\pm }\simeq 0\), corresponding to the (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) region. We have then discussed their impacts on the angular observables \(P_2\) and \(P_5'\) in the decay \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\). It is found that there is only a small impact on \(P_2\) and \(P_5'\) in case A, while case B could obviously increase \(P_5'\) to be consistent with the experimental data and reduce \(P_2\) when the dimuon invariant mass squared \(q^2\) is higher than the zero-crossing point.

Finally, we have explored the constraints on \(\tan \beta \) and \(M_{H^\pm }\) in four types of \(\mathcal {Z}_2\)-symmetric 2HDMs. The role of chirality-flipped operators \(O_{9,10}'\) becomes much more important for large values of \(\tan \beta \). Even with the current data, the types I and X and types II and Y could be clearly distinguished from each other. However, the charged-scalar effect on \(P_2\) and \(P_5'\) in these models is found to be small and does not help to explain the so-called \(P_5'\) anomaly.

Future precise measurements of the angular observables in \(b\rightarrow s\ell ^+\ell ^-\) decays, especially with a finer binning of \(q^2\), would be very helpful to provide a more definite answer concerning the observed anomalies by the LHCb and Belle collaborations, restricting further or even deciphering the NP models.

Notes

Acknowledgements

The work is supported by the National Natural Science Foundation of China (NSFC) under contract Nos. 11675061, 11435003, 11225523 and 11521064. Q.H. is supported by the Excellent Doctorial Dissertation Cultivation Grant from CCNU, under contract number 2013YBZD19.

References

  1. 1.
    S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton–hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    T. Blake, G. Lanfranchi, D.M. Straub, Rare B decays as tests of the standard model. Prog. Part. Nucl. Phys. 92, 50–91 (2017). arXiv:1606.00916
  3. 3.
    M. Beneke, T. Feldmann, D. Seidel, Systematic approach to exclusive \(B \rightarrow V l^+ l^-\), \(V \gamma \) decays. Nucl. Phys. B 612, 25–58 (2001). arXiv:hep-ph/0106067 ADSCrossRefGoogle Scholar
  4. 4.
    M. Beneke, T. Feldmann, D. Seidel, Exclusive radiative and electroweak \(b \rightarrow d\) and \(b \rightarrow s\) penguin decays at NLO. Eur. Phys. J. C 41, 173 (2005). arXiv:hep-ph/0412400 ADSCrossRefGoogle Scholar
  5. 5.
    B. Grinstein, D. Pirjol, Exclusive rare \(B \rightarrow K^*\ell ^+\ell ^-\) decays at low recoil: controlling the long-distance effects. Phys. Rev. D 70, 114005 (2004). arXiv:hep-ph/0404250 ADSCrossRefGoogle Scholar
  6. 6.
    W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, M. Wick, Symmetries and asymmetries of \(B \rightarrow K^{*} \mu ^{+} \mu ^{-}\) decays in the standard model and beyond. JHEP 01, 019 (2009). arXiv:0811.1214 ADSCrossRefGoogle Scholar
  7. 7.
    M. Beylich, G. Buchalla, T. Feldmann, Theory of \(B \rightarrow K^{(*)}\ell ^+ \ell ^-\) decays at high \(q^2\): OPE and quark–hadron duality. Eur. Phys. J. C 71, 1635 (2011). arXiv:1101.5118 ADSCrossRefGoogle Scholar
  8. 8.
    S. Descotes-Genon, J. Matias, M. Ramon, J. Virto, Implications from clean observables for the binned analysis of \(B \rightarrow K^\ast \mu ^+\mu ^-\) at large recoil. JHEP 01, 048 (2013). arXiv:1207.2753 ADSCrossRefGoogle Scholar
  9. 9.
    S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, Optimizing the basis of \(B\rightarrow K^\ast \ell ^+\ell ^-\) observables in the full kinematic range. JHEP 05, 137 (2013). arXiv:1303.5794 ADSCrossRefGoogle Scholar
  10. 10.
    J. Gratrex, M. Hopfer, R. Zwicky, Generalised helicity formalism, higher moments and the \(B \rightarrow K_{J_K}(\rightarrow K \pi ) \bar{\ell }_1 \ell _2\) angular distributions. Phys. Rev. D 93(5), 054008 (2016). arXiv:1506.03970
  11. 11.
    LHCb Collaboration, R. Aaij et al., Measurement of form-factor-independent observables in the decay \(B^{0} \rightarrow K^{*0} \mu ^+ \mu ^-\). Phys. Rev. Lett. 111, 191801 (2013). arXiv:1308.1707
  12. 12.
    S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, On the impact of power corrections in the prediction of \(B \rightarrow K^*\mu ^+\mu ^-\) observables. JHEP 12, 125 (2014). arXiv:1407.8526 ADSCrossRefGoogle Scholar
  13. 13.
    A. Bharucha, D.M. Straub, R. Zwicky, \(B\rightarrow V\ell ^+\ell ^-\) in the standard model from light-cone sum rules. JHEP 08, 098 (2016). arXiv:1503.05534
  14. 14.
    S. Jäger, J. Martin Camalich, On \(B \rightarrow V \ell \ell \) at small dilepton invariant mass, power corrections, and new physics. JHEP 05, 043 (2013). arXiv:1212.2263
  15. 15.
    S. Jäger, J. Martin Camalich, Reassessing the discovery potential of the \(B \rightarrow K^{*} \ell ^+\ell ^-\) decays in the large-recoil region: SM challenges and BSM opportunities. Phys. Rev. D 93(1), 014028 (2016). arXiv:1412.3183
  16. 16.
    LHCb Collaboration, R. Aaij et al., Angular analysis of the \(B^{0} \rightarrow K^{*0} \mu ^{+} \mu ^{-}\) decay using 3 fb\(^{-1}\) of integrated luminosity. JHEP02, 104 (2016). arXiv:1512.04442
  17. 17.
    Belle Collaboration, A. Abdesselam et al., Angular analysis of \(B^0 \rightarrow K^\ast (892)^0 \ell ^+ \ell ^-\). In: Proceedings, LHCSki 2016—a first discussion of 13 TeV results: Obergurgl, Austria, April 10–15, 2016 (2016). arXiv:1604.04042
  18. 18.
    W. Altmannshofer, D.M. Straub, New physics in \(b\rightarrow s\) transitions after LHC run 1. Eur. Phys. J. C 75(8), 382 (2015). arXiv:1411.3161
  19. 19.
    S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, Global analysis of \(b\rightarrow s\ell \ell \) anomalies. JHEP 06, 092 (2016). arXiv:1510.04239
  20. 20.
    T. Hurth, F. Mahmoudi, S. Neshatpour, On the anomalies in the latest LHCb data. Nucl. Phys. B 909, 737–777 (2016). arXiv:1603.00865
  21. 21.
    T. Hurth, F. Mahmoudi, On the LHCb anomaly in B \(\rightarrow K^*\ell ^+\ell ^-\). JHEP 04, 097 (2014). arXiv:1312.5267 ADSCrossRefGoogle Scholar
  22. 22.
    S. Descotes-Genon, J. Matias, J. Virto, Understanding the \(B\rightarrow K^*\mu ^+\mu ^-\) Anomaly. Phys. Rev. D 88, 074002 (2013). arXiv:1307.5683 ADSCrossRefGoogle Scholar
  23. 23.
    W. Altmannshofer, D.M. Straub, New physics in \(B \rightarrow K^*\mu \mu \)? Eur. Phys. J. C 73, 2646 (2013). arXiv:1308.1501 ADSCrossRefGoogle Scholar
  24. 24.
    F. Beaujean, C. Bobeth, D. van Dyk, Comprehensive Bayesian analysis of rare (semi)leptonic and radiative \(B\) decays. Eur. Phys. J. C 74, 2897 (2014). arXiv:1310.2478. (Erratum: Eur. Phys. J. C 74, 3179 (2014))
  25. 25.
    R.R. Horgan, Z. Liu, S. Meinel, M. Wingate, Calculation of \(B^0 \rightarrow K^{*0} \mu ^+ \mu ^-\) and \(B_s^0 \rightarrow \phi \mu ^+ \mu ^-\) observables using form factors from lattice QCD. Phys. Rev. Lett. 112, 212003 (2014). arXiv:1310.3887 ADSCrossRefGoogle Scholar
  26. 26.
    T. Hurth, F. Mahmoudi, S. Neshatpour, Global fits to \(b \rightarrow s\ell \ell \) data and signs for lepton non-universality. JHEP 12, 053 (2014). arXiv:1410.4545 ADSCrossRefGoogle Scholar
  27. 27.
    D. Du, A.X. El-Khadra, S. Gottlieb, A.S. Kronfeld, J. Laiho, E. Lunghi, R.S. Van de Water, R. Zhou, Phenomenology of semileptonic B-meson decays with form factors from lattice QCD. Phys. Rev. D 93(3), 034005 (2016). arXiv:1510.02349
  28. 28.
    M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini, M. Valli, \(B\rightarrow K^* \ell ^+ \ell ^-\) decays at large recoil in the standard model: a theoretical reappraisal. JHEP 06, 116 (2016). arXiv:1512.07157
  29. 29.
    S. Meinel, D. van Dyk, Using \(\Lambda _b\rightarrow \Lambda \mu ^+\mu ^-\) data within a Bayesian analysis of \(|\Delta B| = |\Delta S| = 1\) decays. Phys. Rev. D94(1), 013007 (2016). arXiv:1603.02974
  30. 30.
    A. Khodjamirian, T. Mannel, A.A. Pivovarov, Y.M. Wang, Charm-loop effect in \(B \rightarrow K^{(*)} \ell ^{+} \ell ^{-}\) and \(B\rightarrow K^*\gamma \). JHEP 09, 089 (2010). arXiv:1006.4945 ADSCrossRefMATHGoogle Scholar
  31. 31.
    S. Braß, G. Hiller, I. Nisandzic, Zooming in on \(B\rightarrow K^*\ell \ell \) decays at low recoil. Eur. Phys. J. C 77(1), 16 (2017). arXiv:1606.00775
  32. 32.
    B. Capdevila, S. Descotes-Genon, J. Matias, J. Virto, Assessing lepton-flavour non-universality from \(B\rightarrow K^*\ell \ell \) angular analyses. JHEP 10, 075 (2016). arXiv:1605.03156
  33. 33.
    A. Karan, R. Mandal, A. K. Nayak, R. Sinha, T.E. Browder, Signal of right-handed currents using \(B\rightarrow K^*\ell ^+\ell ^-\) observables at the kinematic endpoint. arXiv:1603.04355
  34. 34.
    I. Ahmed, M.J. Aslam, M.A. Paracha, Asymmetries in \(B \rightarrow K^\ast \ell ^+ \ell ^-\) decays and two Higgs doublet model. arXiv:1602.02400
  35. 35.
    C.-W. Chiang, X.-G. He, G. Valencia, \(Z^\prime \) model for \(b \rightarrow s \ell \bar{\ell }\) flavor anomalies. Phys. Rev. D 93(7), 074003 (2016). arXiv:1601.07328
  36. 36.
    A. Celis, W.-Z. Feng, D. Lüst, Stringy explanation of \(b\rightarrow s \ell ^{+}\ell ^{-}\) anomalies. JHEP 02, 007 (2016). arXiv:1512.02218
  37. 37.
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente, J. Virto, Non-abelian gauge extensions for B-decay anomalies. Phys. Lett. B 760, 214–219 (2016). arXiv:1604.03088
  38. 38.
    A. Crivellin, J. Fuentes-Martin, A. Greljo, G. Isidori, Lepton flavor non-universality in b decays from dynamical Yukawas. Phys. Lett. B 766, 77–85 (2017). arXiv:1611.02703
  39. 39.
    R. Barbieri, C.W. Murphy, F. Senia, B-decay anomalies in a composite leptoquark model. Eur. Phys. J. C 77(1), 8 (2017). arXiv:1611.04930
  40. 40.
    F. Mahmoudi, T. Hurth, S. Neshatpour, Present status of \(b \rightarrow s \ell ^+ \ell ^-\) anomalies (2016). arXiv:1611.05060
  41. 41.
    A. Crivellin, G. D’Ambrosio, J. Heeck, Explaining \(h\rightarrow \mu ^\pm \tau ^\mp \), \(B\rightarrow K^* \mu ^+\mu ^-\) and \(B\rightarrow K \mu ^+\mu ^-/B\rightarrow K e^+e^-\) in a two-Higgs-doublet model with gauged \(L_\mu -L_\tau \). Phys. Rev. Lett. 114, 151801 (2015). arXiv:1501.00993
  42. 42.
    A. Crivellin, G. D’Ambrosio, J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries. Phys. Rev. D 91(7), 075006 (2015). arXiv:1503.03477
  43. 43.
    L. Calibbi, A. Crivellin, T. Ota, Effective field theory approach to \(b\rightarrow s\ell \ell ^{(\prime )}\), \(B\rightarrow K^{(\ast )}\nu \bar{\nu }\) and \(B\rightarrow D^{(\ast )}\tau \nu \) with third generation couplings. Phys. Rev. Lett. 115, 181801 (2015). arXiv:1506.02661
  44. 44.
    P. Arnan, L. Hofer, F. Mescia, A. Crivellin, Loop effects of heavy new scalars and fermions in \(b\rightarrow s\mu ^+\mu ^-\). arXiv:1608.07832
  45. 45.
    T.D. Lee, A theory of spontaneous T violation. Phys. Rev. D 8, 1226–1239 (1973)ADSCrossRefGoogle Scholar
  46. 46.
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P. Silva, Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 516, 1–102 (2012). arXiv:1106.0034 ADSCrossRefGoogle Scholar
  47. 47.
    ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214
  48. 48.
    C.M.S. Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 ADSCrossRefGoogle Scholar
  49. 49.
    H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model. Phys. Rept. 117, 75–263 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    J.E. Kim, Light pseudoscalars. Particle physics and cosmology. Phys. Rept. 150, 1–177 (1987)ADSCrossRefGoogle Scholar
  51. 51.
    M. Trodden, Electroweak baryogenesis: a brief review. In: Proceedings, 33rd rencontres de Moriond 98 electrowek interactions and unified theories: Les racs, France, Mar 14–21, 1998, pp. 471–480 (1998). arXiv:hep-ph/9805252
  52. 52.
    J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, The Higgs hunter’s guide. Front. Phys. 80, 1–404 (2000)Google Scholar
  53. 53.
    S.L. Glashow, S. Weinberg, Natural conservation laws for neutral currents. Phys. Rev. D 15, 1958 (1977)ADSCrossRefGoogle Scholar
  54. 54.
    A. Pich, P. Tuzón, Yukawa alignment in the two-higgs-doublet model. Phys. Rev. D 80, 091702 (2009). arXiv:0908.1554 ADSCrossRefGoogle Scholar
  55. 55.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)ADSCrossRefGoogle Scholar
  56. 56.
    M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)ADSCrossRefGoogle Scholar
  57. 57.
    W. Altmannshofer, S. Gori, G.D. Kribs, A minimal flavor violating 2HDM at the LHC. Phys. Rev. D 86, 115009 (2012). arXiv:1210.2465 ADSCrossRefGoogle Scholar
  58. 58.
    Y. Bai, V. Barger, L.L. Everett, G. Shaughnessy, General two Higgs doublet model (2HDM-G) and large hadron collider data. Phys. Rev. D 87, 115013 (2013). arXiv:1210.4922 ADSCrossRefGoogle Scholar
  59. 59.
    V. Barger, L.L. Everett, H.E. Logan, G. Shaughnessy, Scrutinizing the 125 GeV Higgs boson in two Higgs doublet models at the LHC, ILC, and muon collider. Phys. Rev. D88(11), 115003 (2013). arXiv:1308.0052
  60. 60.
    D. López-Val, T. Plehn, M. Rauch, Measuring extended Higgs sectors as a consistent free couplings model. JHEP 10, 134 (2013). arXiv:1308.1979 ADSCrossRefGoogle Scholar
  61. 61.
    L. Wang, X.-F. Han, Status of the aligned two-Higgs-doublet model confronted with the Higgs data. JHEP 04, 128 (2014). arXiv:1312.4759 ADSCrossRefGoogle Scholar
  62. 62.
    A. Celis, V. Ilisie, A. Pich, LHC constraints on two-Higgs doublet models. JHEP 07, 053 (2013). arXiv:1302.4022 ADSCrossRefGoogle Scholar
  63. 63.
    A. Celis, V. Ilisie, A. Pich, Towards a general analysis of LHC data within two-Higgs-doublet models. JHEP 12, 095 (2013). arXiv:1310.7941 ADSCrossRefGoogle Scholar
  64. 64.
    M. Jung, A. Pich, P. Tuzón, Charged-Higgs phenomenology in the aligned two-Higgs-doublet model. JHEP 11, 003 (2010). arXiv:1006.0470 ADSCrossRefMATHGoogle Scholar
  65. 65.
    M. Jung, A. Pich, P. Tuzón, The \(\bar{B}\rightarrow X_s\gamma \) rate and CP asymmetry within the aligned two-higgs-doublet model. Phys. Rev. D 83, 074011 (2011). arXiv:1011.5154 ADSCrossRefGoogle Scholar
  66. 66.
    M. Jung, X.-Q. Li, A. Pich, Exclusive radiative B-meson decays within the aligned two-Higgs-doublet model. JHEP 10, 063 (2012). arXiv:1208.1251 ADSCrossRefGoogle Scholar
  67. 67.
    A. Celis, M. Jung, X.-Q. Li, A. Pich, Sensitivity to charged scalars in \(B\rightarrow D^{(*)}\tau \nu _\tau \) and \(B\rightarrow \tau \nu _\tau \) decays. JHEP 01, 054 (2013). arXiv:1210.8443 ADSCrossRefGoogle Scholar
  68. 68.
    L. Duarte, G.A. González-Sprinberg, J. Vidal, Top quark anomalous tensor couplings in the two-Higgs-doublet models. JHEP 11, 114 (2013). arXiv:1308.3652 ADSCrossRefGoogle Scholar
  69. 69.
    M. Jung, A. Pich, Electric dipole moments in two-Higgs-doublet models. JHEP 04, 076 (2014). arXiv:1308.6283 ADSCrossRefGoogle Scholar
  70. 70.
    X.-Q. Li, J. Lu, A. Pich, \(B_{s, d}^0 \rightarrow \ell ^+\ell ^-\) decays in the aligned two-Higgs-doublet model. JHEP 06, 022 (2014). arXiv:1404.5865 ADSGoogle Scholar
  71. 71.
    V. Ilisie, New Barr–Zee contributions to \((g-2)_\mu \) in two-Higgs-doublet models. JHEP 04, 077 (2015). arXiv:1502.04199
  72. 72.
    G. Abbas, A. Celis, X.-Q. Li, J. Lu, A. Pich, Flavour-changing top decays in the aligned two-Higgs-doublet model. JHEP 06, 005 (2015). arXiv:1503.06423
  73. 73.
    T. Han, S.K. Kang, J. Sayre, Muon \(g-2\) in the aligned two Higgs doublet model. JHEP 02, 097 (2016). arXiv:1511.05162
  74. 74.
    L. Wang, S. Yang, X.F. Han, \(h\rightarrow \mu \tau \) and muon g-2 in the alignment limit of two-Higgs-doublet model. arXiv:1606.04408
  75. 75.
    S. Davidson, H.E. Haber, Basis-independent methods for the two-Higgs-doublet model. Phys. Rev. D 72, 035004 (2005). arXiv:hep-ph/0504050. (Erratum: Phys. Rev.D 72, 099902 (2005))
  76. 76.
    H.E. Haber, D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. II. The significance of tan\(\beta \). Phys. Rev. D 74, 015018 (2006). arXiv:hep-ph/0602242. (Erratum: Phys. Rev. D 74(5), 059905 (2006))
  77. 77.
    H.E. Haber, D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U. Phys. Rev. D 83, 055017 (2011). arXiv:1011.6188 ADSCrossRefGoogle Scholar
  78. 78.
    G. Buchalla, A.J. Buras, M.E. Lautenbacher, Weak decays beyond leading logarithms. Rev. Mod. Phys. 68, 1125–1144 (1996). arXiv:hep-ph/9512380 ADSCrossRefGoogle Scholar
  79. 79.
    T. Inami, C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \(K_L\rightarrow \mu {\bar{\mu }}\), \(K^+\rightarrow \pi ^+\nu {\bar{\nu }}\) and \(K^0\leftrightarrow {\bar{K}}^0\). Prog. Theor. Phys. 65, 297 (1981). (Erratum: Prog. Theor. Phys. 65, 1772 (1981)) Google Scholar
  80. 80.
    M. Misiak, The \(b \rightarrow se^+ e^-\) and \(b \rightarrow s\gamma \) decays with next-to-leading logarithmic QCD corrections. Nucl. Phys. B 393, 23–45 (1993). (Erratum: Nucl. Phys. B 439, 461 (1995)) Google Scholar
  81. 81.
    N.G. Deshpande, G. Eilam, Flavor-changing electromagnetic transitions. Phys. Rev. D 26, 2463 (1982)ADSCrossRefGoogle Scholar
  82. 82.
    N.G. Deshpande, M. Nazerimonfared, Flavor changing electromagnetic vertex in a nonlinear \(R_\xi \) gauge. Nucl. Phys. B 213, 390–408 (1983)ADSCrossRefGoogle Scholar
  83. 83.
    S.-P. Chia, An exact calculation of \(\bar{d} s g\) vertex. Phys. Lett. B 130, 315–320 (1983)ADSCrossRefGoogle Scholar
  84. 84.
    S.-P. Chia, G. Rajagopal, An exact calculation of the flavor changing quark–photon vertex. Phys. Lett. B 156, 405–410 (1985)ADSCrossRefGoogle Scholar
  85. 85.
    S.-P. Chia, Radiative decay of the bottom quark and the \(W W \gamma \) coupling. Phys. Lett. B 240, 465–470 (1990)ADSCrossRefGoogle Scholar
  86. 86.
    L.-S. Wu, Z.-J. Xiao, Exact calculations of vertex \(\bar{s}\gamma b\) and \(\bar{s} Z b\) in the unitary gauge. Commun. Theor. Phys. 48, 502–508 (2007). arXiv:hep-ph/0612326 ADSCrossRefGoogle Scholar
  87. 87.
    X.-G. He, J. Tandean, G. Valencia, Penguin and box diagrams in unitary gauge. Eur. Phys. J. C 64, 681–687 (2009). arXiv:0909.3638 ADSMathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    A.J. Buras, Climbing NLO and NNLO summits of weak decays. arXiv:1102.5650
  89. 89.
    B. Grinstein, R.P. Springer, M.B. Wise, Strong interaction effects in weak radiative \(\bar{B}\) meson decay. Nucl. Phys. B 339, 269–309 (1990)ADSCrossRefGoogle Scholar
  90. 90.
    S. Bertolini, F. Borzumati, A. Masiero, G. Ridolfi, Effects of supergravity induced electroweak breaking on rare \(B\) decays and mixings. Nucl. Phys. B 353, 591–649 (1991)ADSCrossRefGoogle Scholar
  91. 91.
    P.L. Cho, M. Misiak, D. Wyler, \(K_L\rightarrow \pi ^0 e^+ e^-\) and \(B\rightarrow X_sl^+l^-\) decay in the MSSM. Phys. Rev. D 54, 3329–3344 (1996). arXiv:hep-ph/9601360 ADSCrossRefGoogle Scholar
  92. 92.
    P.H. Chankowski, L. Slawianowska, \(B^0_{d, s}\rightarrow \mu ^-\mu ^+\) decay in the MSSM. Phys. Rev. D 63, 054012 (2001). arXiv:hep-ph/0008046 ADSCrossRefGoogle Scholar
  93. 93.
    M. Ciuchini, G. Degrassi, P. Gambino, G.F. Giudice, Next-to-leading QCD corrections to \(B \rightarrow X_s \gamma \): standard model and two Higgs doublet model. Nucl. Phys. B 527, 21–43 (1998). arXiv:hep-ph/9710335 ADSCrossRefGoogle Scholar
  94. 94.
    F. Borzumati, C. Greub, Two Higgs doublet model predictions for \(\bar{B}\rightarrow X_s\gamma \) in NLO QCD. Phys. Rev. D 58, 074004 (1998). arXiv:hep-ph/9802391. (Addendum: Phys. Rev. D 59, 057501 (1999))
  95. 95.
    C. Bobeth, M. Misiak, J. Urban, Matching conditions for \(b \rightarrow s \gamma \) and \(b \rightarrow s gluon\) in extensions of the standard model. Nucl. Phys. B 567, 153–185 (2000). arXiv:hep-ph/9904413 ADSCrossRefGoogle Scholar
  96. 96.
    C. Bobeth, A.J. Buras, F. Krüger, J. Urban, QCD corrections to \(\bar{B} \rightarrow X_{d, s} \nu \bar{\nu }\), \(\bar{B}_{d, s} \rightarrow \ell ^{+} \ell ^{-}\), \(K \rightarrow \pi \nu \bar{\nu }\) and \(K_{L} \rightarrow \mu ^{+} \mu ^{-}\) in the MSSM. Nucl. Phys. B 630, 87–131 (2002). arXiv:hep-ph/0112305 ADSCrossRefGoogle Scholar
  97. 97.
    S. Schilling, C. Greub, N. Salzmann, B. Töedtli, QCD corrections to the Wilson coefficients \(C_9\) and \(C_{10}\) in two-Higgs doublet models. Phys. Lett. B 616, 93–100 (2005). arXiv:hep-ph/0407323 ADSCrossRefGoogle Scholar
  98. 98.
    F. Krüger, L.M. Sehgal, N. Sinha, R. Sinha, Angular distribution and CP asymmetries in the decays \(\bar{B}\rightarrow K^-\pi ^+e^-e^+\) and \(\bar{B}\rightarrow \pi ^-\pi ^+e^-e^+\). Phys. Rev. D 61, 114028 (2000). arXiv:hep-ph/9907386. (Erratum: Phys. Rev. D 63, 019901 (2001))
  99. 99.
    D. Bečirević, E. Schneider, On transverse asymmetries in \(B\rightarrow K^\ast \ell ^+\ell ^-\). Nucl. Phys. B 854, 321–339 (2012). arXiv:1106.3283 ADSCrossRefMATHGoogle Scholar
  100. 100.
    J. Matias, F. Mescia, M. Ramon, J. Virto, Complete anatomy of \(\bar{B}_d \rightarrow \bar{K}^{* 0} (\rightarrow K \pi )\ell ^+\ell ^-\) and its angular distribution. JHEP 04, 104 (2012). arXiv:1202.4266 ADSCrossRefGoogle Scholar
  101. 101.
    OPAL, DELPHI, L3, ALEPH, LEP Higgs Working Group for Higgs boson searches Collaboration, Search for charged Higgs bosons: preliminary combined results using LEP data collected at energies up to 209-GeV. In: Lepton and photon interactions at high energies. Proceedings, 20th international symposium, LP 2001, Rome, Italy, July 23–28, 2001 (2001). arXiv:hep-ex/0107031
  102. 102.
    A. Barroso, P.M. Ferreira, I.P. Ivanov, R. Santos, Metastability bounds on the two Higgs doublet model. JHEP 06, 045 (2013). arXiv:1303.5098 ADSCrossRefGoogle Scholar
  103. 103.
    P.S. Bhupal Dev, A. Pilaftsis, Maximally symmetric two higgs doublet model with natural standard model alignment. JHEP12, 024 (2014). arXiv:1408.3405. (Erratum: JHEP 1511, 147 (2015))
  104. 104.
    D. Das, New limits on tan \(\beta \) for 2HDMs with Z\(_2\) symmetry. Int. J. Mod. Phys. A 30(26), 1550158 (2015). arXiv:1501.02610
  105. 105.
    I. Chakraborty, A. Kundu, Scalar potential of two-Higgs doublet models. Phys. Rev. D 92(9), 095023 (2015). arXiv:1508.00702
  106. 106.
    C. Patrignani, Review of particle physics. Chin. Phys. C 40(10), 100001 (2016)Google Scholar
  107. 107.
    CLEO Collaboration, S. Chen et al., Branching fraction and photon energy spectrum for \(b \rightarrow s \gamma \). Phys. Rev. Lett. 87, 251807 (2001). arXiv:hep-ex/0108032
  108. 108.
    Belle Collaboration, A. Limosani et al., Measurement of inclusive radiative B-meson decays with a photon energy threshold of 1.7-GeV. Phys. Rev. Lett. 103, 241801 (2009). arXiv:0907.1384
  109. 109.
    Belle Collaboration, T. Saito et al., Measurement of the \(\bar{B} \rightarrow X_s \gamma \) branching fraction with a sum of exclusive decays. Phys. Rev. D 91(5), 052004 (2015). arXiv:1411.7198
  110. 110.
    BaBar Collaboration, B. Aubert et al., Measurement of the \(B \rightarrow X_s \gamma \) branching fraction and photon energy spectrum using the recoil method. Phys. Rev. D 77, 051103 (2008). arXiv:0711.4889 ADSCrossRefGoogle Scholar
  111. 111.
    BaBar Collaboration, J.P. Lees et al., Precision measurement of the \(B \rightarrow X_s \gamma \) photon energy spectrum, branching fraction, and direct CP asymmetry \(A_{CP}(B \rightarrow X_{s+d}\gamma )\). Phys. Rev. Lett. 109, 191801 (2012). arXiv:1207.2690
  112. 112.
    BaBar Collaboration, J.P. Lees et al., Measurement of B(\(B\rightarrow X_s \gamma \)), the \(B\rightarrow X_s \gamma \) photon energy spectrum, and the direct CP asymmetry in \(B\rightarrow X_{s+d} \gamma \) decays. Phys. Rev. D 86, 112008 (2012). arXiv:1207.5772
  113. 113.
    BaBar Collaboration, J.P. Lees et al., Exclusive measurements of \(b \rightarrow s\gamma \) transition rate and photon energy spectrum. Phys. Rev. D 86, 052012 (2012). arXiv:1207.2520
  114. 114.
    Heavy Flavor Averaging Group (HFAG) Collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron, and \(\tau \)-lepton properties as of summer 2014. arXiv:1412.7515
  115. 115.
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays. Phys. Rev. Lett. 114(22), 221801 (2015). arXiv:1503.01789
  116. 116.
    X.Q. Li, Y.D. Yang, X.B. Yuan, Exclusive radiative B-meson decays within minimal flavor-violating two-Higgs-doublet models. Phys. Rev. D 89, 054024 (2014). arXiv:1311.2786 ADSCrossRefGoogle Scholar
  117. 117.
    P. Gambino, M. Gorbahn, U. Haisch, Anomalous dimension matrix for radiative and rare semileptonic B decays up to three loops. Nucl. Phys. B 673, 238–262 (2003). hep-ph/0306079ADSCrossRefGoogle Scholar
  118. 118.
    BaBar Collaboration, J.P. Lees et al., Measurement of angular asymmetries in the decays \(B \rightarrow K^\ast \ell ^+\ell ^-\). Phys. Rev. D 93(5), 052015 (2016). arXiv:1508.07960
  119. 119.
    B. Capdevila, S. Descotes-Genon, L. Hofer, J. Matias, Hadronic uncertainties in \(B\rightarrow K^*\mu ^+\mu ^-\): a state-of-the-art analysis. arXiv:1701.08672
  120. 120.
    V.G. Chobanova, T. Hurth, F. Mahmoudi, D. Martinez Santos, S. Neshatpour, Large hadronic power corrections or new physics in the rare decay \(B\rightarrow K^\ast \mu ^+\mu ^-\)? arXiv:1702.02234

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Authors and Affiliations

  1. 1.Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE)Central China Normal UniversityWuhanChina

Personalised recommendations