Skip to main content

\(S_3\) discrete group as a source of the quark mass and mixing pattern in \(331\) models

A preprint version of the article is available at arXiv.

Abstract

We propose a model based on the \({SU}(3)_{C}\otimes SU(3)_{L}\otimes U(1)_{X}\) gauge symmetry with an extra \(S_{3}\otimes Z_{2}\otimes Z_{4}\otimes Z_{12}\) discrete group, which successfully accounts for the SM quark mass and mixing pattern. The observed hierarchy of the SM quark masses and quark mixing matrix elements arises from the \(Z_{4}\) and \(Z_{12}\) symmetries, which are broken at a very high scale by the \({SU}(3)_{L}\) scalar singlets (\(\sigma \),\(\zeta \)) and \(\tau \), charged under these symmetries, respectively. The Cabbibo mixing arises from the down-type quark sector whereas the up quark sector generates the remaining quark mixing angles. The obtained magnitudes of the CKM matrix elements, the CP violating phase, and the Jarlskog invariant are in agreement with the experimental data.

Introduction

The discovery of a scalar field with a mass of \(125\) GeV by LHC experiments [14] confirms that the standard model (SM) is the right theory of electroweak interactions and may provide an explanation for the origin of mass of fundamental particles and for the spontaneous symmetry breaking. Despite the success of the LHC experiments, there are many aspects not yet explained, such as the fermion mass hierarchy. This discovery of the Higgs scalar field opens the possibility to formulate theories beyond the SM that include additional scalar fields that can be useful to explain the existence of dark matter [58].

One of the outstanding unresolved issues in Particle Physics is the origin of the masses of fundamental fermions. The current theory of strong and electroweak interactions, the SM, has proven to be remarkably successful in passing all experimental tests. Despite its great success, the SM based on the \({SU}(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\) gauge symmetry is unlikely to be a truly fundamental theory due to unexplained features [912]. Most of them are linked to the existence of three families of fermions as well as the fermion mass and mixing hierarchy; problems presented in its quark and lepton sectors. Neutrino oscillation experiments provide a clear indication that neutrinos are massive particles, but these experiments do not explain neither the neutrino mass squared splittings nor the Dirac or Majorana identity of neutrinos. While in the quark sector the mixing angles are small, in the lepton sector two of the mixing angles are large, and one mixing angle is small. This suggests different mechanisms for the generation of mass in the quark and lepton sectors. Experiments with solar, atmospheric and reactor neutrinos provide evidence of neutrino oscillations from the measured non-vanishing neutrino mass squared splittings.

One clear and outstanding feature in the pattern of quark masses is that they increase from one generation to the next spreading over a range of five orders of magnitude [1220]. From the phenomenological point of view, it is possible to describe some features of the mass hierarchy by assuming zero-texture Yukawa matrices [2135]. Recently, discrete groups have been considered to explain the observed pattern of fermion masses and mixing [3671]. Other models with horizontal symmetries have been proposed in the literature [7277].

On the other hand, the origin of the structure of fermions can be addressed in family dependent models. Alternatively, an explanation to this issue can also be provided by the models based on the gauge symmetry \({SU}(3)_{c}\otimes SU(3)_{L}\otimes U(1)_{X}\), also called 3-3-1 models, which introduce a family non-universal \(U(1)_{X}\) symmetry [7891]. Models based on the gauge symmetry \({SU}(3)_{C}\times SU(3)_{L}\times U(1)_{X}\) are very interesting since they predict the existence of three families from the quiral anomaly cancelation [9297]. In these models, two families of quarks have the same quantum numbers, which are associated to the two families of light quarks to correctly predict the Cabbibo mixing angle. The third family has different \( U(1)_{X}\) values and thus it is associated to the heavy quarks. Thus, the fact that the third family is treated under a different representation, can explain the large mass difference between the heaviest quark family and the two lighter ones [98]. These models include a Peccei–Quinn symmetry that sheds light into the strong CP problem [99101]. The 331 models with sterile neutrinos have weakly interacting massive fermionic dark matter candidates [102].

In this paper we propose a version of the \({SU}(3)_{C}\times SU(3)_{L}\times U(1)_{X}\) model with an additional discrete symmetry group \(S_{3}\otimes Z_{2}\otimes Z_{4}\otimes Z_{12}\) and an extended scalar sector needed in order to reproduce the specific patterns of mass matrices in the quark sector that successfully account for the quark mass and mixing hierarchy. The particular role of each additional scalar field and the corresponding particle assignments under the symmetry group of the model are explained in details in Sect. 2. Our model successfully describes the prevailing pattern of the SM quark masses and mixing.

This paper is organized as follows. In Sect. 2 we outline the proposed model. In Sect. 3 we present our results in terms of quark masses and mixing, which is followed by a numerical analysis. In Sect. 4, we discuss the scalar mass spectrum resulting from the low energy scalar potential. Finally in Sect. 5, we state our conclusions. In the appendices we present several technical details. Appendix A gives a brief description of the \(S_{3}\) group. Appendix B presents a discussion of the stability conditions of the low energy scalar potential.

The model

We consider an extension of the minimal \({SU}(3)_{C}\otimes SU\left( 3\right) _{L}\otimes U\left( 1\right) _{X}\) (331) model with the full symmetry \(\mathcal {G}\) experiencing a three-step spontaneous breaking:

(2.1)

where the different symmetry breaking scales satisfy the following hierarchy: \(\Lambda _\mathrm{int}\gg v_{\chi }\gg v_{\eta },v_{\rho }.\)

In our model 331 model, the electric charge is defined in terms of the \( SU(3) \) generators and the identity by

$$\begin{aligned} Q=T_{3}-\frac{1}{\sqrt{3}}T_{8}+XI, \end{aligned}$$
(2.2)

with \(I=\mathrm{Diag}(1,1,1)\), \(T_{3}=\frac{1}{2}\mathrm{Diag}(1,-1,0)\) and \(T_{8}=(\frac{1}{2 \sqrt{3}})\mathrm{Diag}(1,1,-2)\).

The anomaly cancelation of \({SU}(3)_{L}\) requires that the two families of quarks be accommodated in \(3^{*}\) irreducible representations (irreps). From the quark colors, it follows that the number of \(3^{*}\) irreducible representations is six. The other family of quarks is accommodated with its three colors, into a \(3\) irreducible representation. When including the three families of leptons, we have six \(3\) irreps. Consequently, the \({SU}(3)_{L}\) representations are vector like and anomaly free. In order to have anomaly free \(U(1)_{X}\) representations, one needs to assign quantum numbers to the fermion families in such a way that the combination of the \(U(1)_{X}\) representations with other gauge sectors be anomaly free. Therefore, from the requirement of anomaly cancelation we get the following \( (SU(3)_{C},SU(3)_{L},U(1)_{X})\) left-handed fermionic representations:

$$\begin{aligned}&Q_{L}^{1,2} = \begin{pmatrix} D^{1,2} \\ -U^{1,2} \\ J^{1,2} \\ \end{pmatrix} _{L}:(3,3^{*},0), \nonumber \\&Q_{L}^{3} = \begin{pmatrix} U^{3} \\ D^{3} \\ T \\ \end{pmatrix} _{L}:(3,3,1/3), \nonumber \\&L_{L}^{1,2,3} = \begin{pmatrix} \nu ^{1,2,3} \\ e^{1,2,3} \\ (\nu ^{1,2,3})^{c} \\ \end{pmatrix} _{L}:(1,3,-1/3). \end{aligned}$$
(2.3)

Let us note that the right-handed sector transforms as singlets under \({SU}(3)_{L}\). The right-handed up- and down-type SM quarks transform under \( (SU(3)_{C},SU(3)_{L},U(1)_{X})\) as \(U_{R}^{1,2,3}:(3^{*},1,2/3)\) and \( D_{R}^{1,2,3}:(3^{*},1,-1/3)\), respectively. In addition, we see that the model has the following heavy fermions: a single flavor quark \(T\) with electric charge \(2/3\), two flavor quarks \(J^{1,2}\) with charge \(-1/3\). The right-handed sector of the exotic quarks transforms as \(T_{R}:(3^{*},1,2/3)\) and \(J_{R}^{1,2}:(3^{*},1,-1/3)\). In the concerning to the lepton sector, we have three right-handed charged leptons \(e_{R}^{1,2,3}:(1,1,-1)\) and three right-handed Majorana leptons \(N_{R}^{1,2,3}:(1,1,0)\) (recently, a discussion as regards neutrino masses via double and inverse see-saw mechanism was perform in Refs. [103, 104]).

The scalar sector of the 331 model includes three \(3\)’s irreps of \({SU}(3)_{L}\), where one triplet \(\chi \) acquires a vacuum expectation value (VEV) at high energy scale, \(v_{\chi }\), responsible for the breaking of the \( SU(3)_{L}\times U(1)_{X}\) symmetry down to the \({SU}(2)_{L}\times U(1)_{Y}\) electroweak group of the SM; and two light triplet fields \(\eta \) and \(\rho \) get VEVs \(v_{\eta }\) and \(v_{\rho }\), respectively, at the electroweak scale and give mass to the fermion and gauge sector. In addition to the aforementioned scalar spectrum, we introduce six \({SU}\left( 3\right) _{L}\) scalar singlets, namely, \(\xi _{1}\), \(\xi _{2}\), \(\zeta _{1}\), \(\zeta _{2}\), \(\sigma \), and \(\tau \). Their role and importance will be explained later in this section.

The \([SU(3)_{L},U(1)_{X}]\) group structure of the scalar fields of our model is

$$\begin{aligned} \chi&= \begin{pmatrix} \chi _{1}^{0} \\ \chi _{2}^{-} \\ \frac{1}{\sqrt{2}}(\upsilon _{\chi }+\xi _{\chi }\pm i\zeta _{\chi }) \\ \end{pmatrix} :(3,-1/3),\xi _{1}:(1,0), \nonumber \\ \rho&= \begin{pmatrix} \rho _{1}^{+} \\ \frac{1}{\sqrt{2}}(\upsilon _{\rho }+\xi _{\rho }\pm i\zeta _{\rho }) \\ \rho _{3}^{+} \\ \end{pmatrix} :(3,2/3),\xi _{2}:(1,0), \nonumber \\ \eta&= \begin{pmatrix} \frac{1}{\sqrt{2}}(\upsilon _{\eta }+\xi _{\eta }\pm i\zeta _{\eta }) \\ \eta _{2}^{-} \\ \eta _{3}^{0} \end{pmatrix} :(3,-1/3),\sigma :(1,0), \nonumber \\ \tau&:(1,0),\zeta _{1}:(1,0),\zeta _{2}:(1,0). \end{aligned}$$
(2.4)

We group the scalar fields into doublet and singlet representations of \(S_{3}\). The \(S_{3}\otimes Z_{2}\otimes Z_{4}\otimes Z_{12}\) assignments of the scalar fields are

$$\begin{aligned} \Phi&= \left( \eta ,\chi \right) \sim \left( \mathbf {2,}1,1,1\right) ,\quad \rho \sim \left( \mathbf {1}^{\prime }\mathbf {,}1,1,1\right) , \nonumber \\ \sigma&\sim \left( \mathbf {1,-}1,i,1\right) ,\quad \tau \sim \left( \mathbf {1,}1,1,\omega ^{-\frac{1}{4}}\right) , \nonumber \\ \xi&= \left( \xi _{1},\xi _{2}\right) \sim \left( \mathbf {2,-}1,1,1\right) , \end{aligned}$$
(2.5)
$$\begin{aligned} \zeta&= \left( \zeta _{1},\zeta _{2}\right) \sim \left( \mathbf {2,-} 1,i,1\right) . \end{aligned}$$
(2.6)

where \(\omega =e^{2\pi i/3}\).

Regarding the quark sector, we assign the quark fields in trivial and non-trivial singlet representions of \(S_{3}\). We assumed that all left-handed quarks and right-handed quarks are assigned to \(S_{3}\) trivial singlets excepting, \(U_{R}^{1}\), \(U_{R}^{2}\), \(U_{R}^{3}\), \(T_{R}\), \(D_{R}^{3}\), \( J_{R}^{1}\), and \(J_{R}^{2}\), which are assumed to be non-trivial singlets. The quark assignments under \(S_{3}\otimes Z_{2}\otimes Z_{4}\otimes Z_{12}\) are

$$\begin{aligned} \begin{aligned} Q_{L}^{1}&\sim \left( \mathbf {1,}1,1,\omega ^{-\frac{1}{2}}\right) ,\quad Q_{L}^{2}\sim \left( \mathbf {1,}1,1,\omega ^{-\frac{1}{4} }\right) , \\ Q_{L}^{3}&\sim \left( \mathbf {1,}1,1,1\right) ,\quad U_{R}^{1}\sim \left( \mathbf {1}^{\prime }\mathbf {,}1,-1,\omega \right) , \\ U_{R}^{2}&\sim \left( \mathbf {1}^{\prime }\mathbf {,}1,-1,\omega ^{\frac{1}{ 4}}\right) ,\quad U_{R}^{3}\sim \left( \mathbf {1}^{\prime }\mathbf {,-} 1,-i,1\right) , \\ D_{R}^{1}&\sim \left( \mathbf {1,-}1,1,\omega \right) ,\quad D_{R}^{2}\sim \left( \mathbf {1,-}1,1,i\right) , \\ D_{R}^{3}&\sim \left( \mathbf {1}^{\prime }\mathbf {,}1,1,i\right) ,\quad T_{R}\sim \left( \mathbf {1}^{\prime }\mathbf {,-}1,1,1\right) , \\ J_{R}^{1}&\sim \left( \mathbf {1}^{\prime }\mathbf {,-}1,1,\omega ^{-\frac{1 }{2}}\right) ,\quad J_{R}^{2}\sim \left( \mathbf {1}^{\prime }\mathbf {,- }1,1,\omega ^{-\frac{1}{4}}\right) . \end{aligned} \end{aligned}$$
(2.7)

With the above particle content, the following relevant Yukawa terms for the quark sector arise:

$$\begin{aligned} -\mathcal {L}_{Y}&= y_{11}^{\left( U\right) }\overline{Q}_{L}^{1}\rho ^{*}U_{R}^{1}\frac{\sigma ^{2}\tau ^{6}}{\Lambda ^{8}}+y_{22}^{\left( U\right) } \overline{Q}_{L}^{2}\rho ^{*}U_{R}^{2}\frac{\sigma ^{2}\tau ^{2}}{ \Lambda ^{4}} \nonumber \\&+y_{13}^{\left( U\right) }\overline{Q}_{L}^{1}\rho ^{*}U_{R}^{3}\frac{ \sigma \tau ^{2}}{\Lambda ^{3}}+y_{23}^{\left( U\right) }\overline{Q} _{L}^{2}\rho ^{*}U_{R}^{3}\frac{\sigma \tau }{\Lambda ^{2}} \nonumber \\&+y_{33}^{\left( U\right) }\overline{Q}_{L}^{3}\Phi U_{R}^{3}\frac{\zeta }{ \Lambda }+y^{\left( T\right) }\overline{Q}_{L}^{3}\Phi T_{R}\frac{\xi }{ \Lambda } \nonumber \\&+y_{11}^{\left( D\right) }\overline{Q}_{L}^{1}\Phi ^{*}D_{R}^{1}\frac{ \xi \tau ^{6}}{\Lambda ^{7}}+y_{12}^{\left( D\right) }\overline{Q} _{L}^{1}\Phi ^{*}D_{R}^{2}\frac{\xi \tau ^{5}}{\Lambda ^{6}} \nonumber \\&+y_{22}^{\left( D\right) }\overline{Q}_{L}^{2}\Phi ^{*}D_{R}^{2}\frac{ \xi \tau ^{4}}{\Lambda ^{5}}+y_{21}^{\left( D\right) }\overline{Q} _{L}^{2}\Phi ^{*}D_{R}^{1}\frac{\xi \tau ^{5}}{\Lambda ^{6}} \nonumber \\&+y_{33}^{\left( D\right) }\overline{Q}_{L}^{3}\rho D_{R}^{3}\frac{\tau ^{3} }{\Lambda ^{3}}+y_{1}^{\left( J\right) }\overline{Q}_{L}^{1}\Phi ^{*}J_{R}^{1}\frac{\xi }{\Lambda } \nonumber \\&+y_{2}^{\left( J\right) }\overline{Q}_{L}^{2}\Phi ^{*}J_{R}^{2}\frac{ \xi }{\Lambda } \end{aligned}$$
(2.8)

where the dimensionless couplings \(y_{ij}^{\left( U,D\right) }\) (\(i,j=1,2,3\)), \(y^{(T)}\), \(y^{(J)}_{1,2}\) are \(\mathcal {O}(1)\) parameters.

To explain the fermion mass hierarchy it is necessary to assume an ansatz for the Yukawa matrices. A candidate for generating specific Yukawa textures is the \(S_{3}\otimes Z_{2}\otimes Z_{4}\otimes Z_{12}\) discrete group that can explain the prevailing pattern of fermion masses and mixing. The \(S_{3}\) discrete symmetry is the smallest non-Abelian discrete symmetry group having three irreducible representations (irreps), explicitly two singlets and one doublet irreps. The \(Z_{2}\) symmetry determines the allowed Yukawa terms for the quark sector, thus resulting in a reduction of model parameters and allowing one to decouple the bottom quark from the light down and strange quarks. The \(Z_{4}\) and \(Z_{12}\) symmetries shape the hierarchical structure of the quark mass matrices that yields a realistic pattern of quark masses and mixing. It is noteworthy that the properties of the \(Z_{N}\) groups imply that the \(Z_{4}\) and \(Z_{12}\) symmetries are the lowest cyclic symmetries that allow one to build Yukawa terms of dimensions six and ten, respectively. Consequently, the \(Z_{4}\otimes Z_{12}\) symmetry is the lowest cyclic symmetry from which a 12 dimensional Yukawa term can be built, crucial to get the required \(\lambda ^{8}\) suppression in the 11 entry of the up-type quark mass matrix, where \(\lambda =0.225\) is one of the Wolfenstein parameters. Furthermore, thanks to the \(Z_{4}\otimes Z_{12}\) symmetry, the lowest down-type quark Yukawa term contributing to the 11 entry of the down-type quark mass matrix has dimension 11. Thus, the \( Z_{4}\) and \(Z_{12}\) symmetries are crucial to explain the smallness of the up and down quark masses.

We assume the following VEV pattern for the \({SU}\left( 3\right) _{L}\) singlet scalar fields:

$$\begin{aligned} \left\langle \xi \right\rangle&= v_{\xi }\left( 1,0\right) , \left\langle \tau \right\rangle =v_{\tau } \nonumber \\ \left\langle \zeta \right\rangle&= v_{\zeta }\left( 0,1\right) ,\left\langle \sigma \right\rangle =v_{\sigma }, \end{aligned}$$
(2.9)

i.e. the VEVs of \(\xi \) and \(\zeta \) are aligned as \((1,0)\) and \((0,1)\) in the \(S_{3}\) directions, respectively. Besides that, the \({SU}\left( 3\right) _{L}\) scalar singlets, \(\xi _{1}\), \(\zeta _2\), \(\sigma \), and \(\tau \), are assumed to acquire VEVs at a scale \(\Lambda _\mathrm{int}\) much larger than \(\upsilon _{\chi }\) in order to break the \(\mathcal {G}=SU(3)_{C}\otimes SU\left( 3\right) _{L}\otimes U\left( 1\right) _{X}\otimes S_{3}\otimes Z_{2}\otimes Z_{4}\otimes Z_{12}\) symmetry group down to \( SU(3)_{C}\otimes SU\left( 3\right) _{L}\otimes U\left( 1\right) _{X}\). Let us note that the \(S_{3}\) doublet \({SU}\left( 3\right) _{L}\) singlet scalars \(\xi \) and \(\zeta \) are the only scalar fields odd under the \(Z_{2}\) symmetry. Furthermore the only scalar fields charged under the \(Z_{4}\) and \(Z_{12}\) symmetries are the \({SU}\left( 3\right) _{L}\) singlet scalars \(\sigma \), \(\zeta \), and \(\tau \), respectively. Thus, the breaking of the \(Z_{2}\), \(Z_{4}\), and \(Z_{12}\) symmetries is caused by the scalar fields \(\xi \), (\(\sigma \), \(\zeta \)), and \(\tau \), respectively, acquiring VEVs at a very high scale. It is worth mentioning that we have chosen a VEV patterns for the \(S_{3}\) doublets \({SU}\left( 3\right) _{L}\) singlet scalar \(\xi \) and \(\zeta \), in the \(\left( 1,0\right) \) and \(\left( 0,1\right) \) \(S_{3}\) directions, respectively, as indicated by Eq. (2.9), in order to decouple the heavy exotic quarks from the SM quarks. Due to the aforementioned choice of the VEV pattern of \(\xi \), only the \({SU}(3)_{L}\) scalar triplet \(\chi \) participates in the Yukawa interactions giving masses to the exotic \(T\), \(J^{1}\), and \(J^{2}\) quarks. Furthermore, the masses of the SM quarks will arise from the Yukawa terms involving the \({SU}(3)_{L}\) scalar triplets \(\eta \) and \(\rho \).

Considering that the quark mass and mixing pattern arises from the \(Z_{4}\) and \(Z_{12}\) symmetries, and in order to relate the quark masses with the quark mixing parameters, we set the VEVs of the \(SU\left( 3\right) _{L}\) singlet scalar fields excepting \(v_{\zeta }\) as follows:

$$\begin{aligned} v_{\xi }=v_{\tau }=v_{\sigma }=\Lambda _\mathrm{int}=\lambda \Lambda , \end{aligned}$$
(2.10)

where \(\lambda =0.225\) is one of the parameters of the Wolfenstein parametrization and \(\Lambda \) is the cutoff of our model.

To reproduce the right value of the top quark mass while keeping \( y_{33}^{\left( U\right) }\sim \mathcal {O}(1)\lesssim \sqrt{4\pi }\) as required by perturbativity, we set \(v_{\zeta }\) in the following range:

$$\begin{aligned} \frac{\sqrt{2}m_{t}}{\sqrt{4\pi }v_{\eta }}\Lambda <v_{\zeta }<\Lambda . \end{aligned}$$
(2.11)

Quark masses and mixing

Using Eq. (2.8) and considering that the VEV pattern of the \(SU\left( 3\right) _{L}\) singlet scalar fields satisfies Eq. (2.9) with the nonvanishing VEVs set to be equal to \(\lambda \Lambda \) (\(\Lambda \) being the cutoff of our model) as indicated by Eq. (2.10), we find that the SM quarks do not mix with the heavy exotic quarks and that the mass matrices for up- and down-type SM quarks are

$$\begin{aligned} \begin{aligned} M_{U}&=\left( \begin{array}{ccc} a_{11}^{\left( U\right) }\lambda ^{8} &{} 0 &{} a_{13}^{\left( U\right) }\lambda ^{3} \\ 0 &{} a_{22}^{\left( U\right) }\lambda ^{4} &{} a_{23}^{\left( U\right) }\lambda ^{2} \\ 0 &{} 0 &{} a_{33}^{\left( U\right) } \end{array} \right) \frac{v}{\sqrt{2}}, \\ M_{D}&=\left( \begin{array}{ccc} a_{11}^{\left( D\right) }\lambda ^{7} &{} a_{12}^{\left( D\right) }\lambda ^{6} &{} 0 \\ a_{21}^{\left( D\right) }\lambda ^{6} &{} a_{22}^{\left( D\right) }\lambda ^{5} &{} 0 \\ 0 &{} 0 &{} a_{33}^{\left( D\right) }\lambda ^{3} \end{array} \right) \frac{v}{\sqrt{2}}, \end{aligned} \end{aligned}$$
(3.1)

where \(\lambda =0.225\) is one of the Wolfenstein parameters, \(v=246\) GeV the symmetry breaking scale, and \(a_{ij}^{\left( U,D\right) }\) (\(i,j=1,2,3\)) are \( \mathcal {O}(1)\) parameters. From the SM quark mass matrix textures given by Eq. (3.1), it follows that the Cabbibo mixing arises from the down-type quark sector whereas the up quark sector generates the remaining quark mixing angles. The \(\mathcal {O}(1)\) dimensionless couplings \(a_{ij}^{\left( U,D\right) }\) (\(i,j=1,2,3\)) in Eq. (3.1) are given by the following relations:

$$\begin{aligned} a_{11}^{\left( U\right) }&= y_{11}^{\left( U\right) }\frac{v_{\rho }}{v}, \quad a_{22}^{\left( U\right) }=y_{11}^{\left( U\right) }\frac{ v_{\rho }}{v},\quad a_{13}^{\left( U\right) }=y_{13}^{\left( U\right) }\frac{v_{\rho }}{v}, \nonumber \\ a_{23}^{\left( U\right) }&= y_{23}^{\left( U\right) }\frac{v_{\rho }}{v}, \quad a_{33}^{\left( U\right) }=y_{33}^{\left( U\right) }\frac{ v_{\zeta }v_{\eta }}{v\Lambda }, \nonumber \\ a_{11}^{\left( D\right) }&= y_{11}^{\left( D\right) }\frac{v_{\eta }}{v}, \quad a_{12}^{\left( D\right) }=y_{12}^{\left( D\right) }\frac{ v_{\eta }}{v},\quad a_{21}^{\left( D\right) }=y_{21}^{\left( D\right) }\frac{v_{\eta }}{v}, \nonumber \\ a_{22}^{\left( D\right) }&= y_{22}^{\left( D\right) }\frac{v_{\eta }}{v}, \quad a_{33}^{\left( D\right) }=y_{33}^{\left( D\right) }\frac{ v_{\rho }}{v}. \end{aligned}$$
(3.2)

Furthermore, we find that the exotic quark masses are

$$\begin{aligned} m_{T}&= \lambda y^{\left( T\right) }\frac{v_{\chi }}{\sqrt{2}}, \nonumber \\ m_{J^{1,2}}&= \lambda y_{1,2}^{\left( J\right) }\frac{v_{\chi }}{\sqrt{2}}= \frac{y_{1,2}^{\left( J\right) }}{y^{\left( T\right) }}m_{T}. \end{aligned}$$
(3.3)

From Eq. (3.1) we find that the up- and down-type SM quark masses are approximately given by

$$\begin{aligned} m_{u}&\simeq a_{11}^{\left( U\right) }\lambda ^{8}\frac{v}{\sqrt{2}}, m_{c}\simeq a_{22}^{\left( U\right) }\lambda ^{4}\frac{v}{ \sqrt{2}}, \nonumber \\ m_{t}&\simeq a_{33}^{\left( U\right) }\frac{v}{\sqrt{2}}, \nonumber \\ m_{d}&\simeq \left| a_{11}^{\left( D\right) }a_{22}^{\left( D\right) }-a_{12}^{\left( D\right) }a_{21}^{\left( D\right) }\right| \lambda ^{7} \frac{v}{\sqrt{2}}, \nonumber \\ m_{s}&\simeq a_{22}^{\left( D\right) }\lambda ^{5}\frac{v}{\sqrt{2}}, m_{b}\simeq a_{33}^{\left( D\right) }\lambda ^{3}\frac{v}{ \sqrt{2}}. \end{aligned}$$
(3.4)

We also find that the CKM quark mixing matrix is approximately given by

$$\begin{aligned}&V_\mathrm{CKM} \nonumber \\&\quad \simeq \left( \begin{array}{ccc} c_{12}c_{13} &{} c_{13}s_{12} &{} e^{i\delta }s_{13} \nonumber \\ e^{-i\delta }c_{12}s_{13}s_{23}-c_{23}s_{12} &{} c_{12}c_{23}+e^{-i\delta }s_{12}s_{13}s_{23} &{} -c_{13}s_{23} \nonumber \\ -s_{12}s_{23}-e^{-i\delta }c_{12}c_{23}s_{13} &{} c_{12}s_{23}-e^{-i\delta }c_{23}s_{12}s_{13} &{} c_{13}c_{23} \end{array} \right) ,\nonumber \\ \end{aligned}$$
(3.5)

where \(c_{ij}=\cos \theta _{ij}\), \(s_{ij}=\sin \theta _{ij}\) (with \(i\ne j\) and\(\ i,j=1,2,3\)), \(\theta _{ij}\) and \(\delta \) being the quark mixing angles and the CP violating phase, respectively. The quark mixing angles and the CP violating phase are given by

$$\begin{aligned} \tan \theta _{12}&\simeq \frac{a_{12}^{\left( D\right) }}{a_{22}^{\left( D\right) }}\lambda ,\quad \tan \theta _{23}\simeq \frac{a_{23}^{\left( U\right) }}{a_{33}^{\left( U\right) }}\lambda ^{2}, \nonumber \\ \tan \theta _{13}&\simeq \frac{\left| a_{13}^{\left( U\right) }\right| }{a_{33}^{\left( U\right) }}\lambda ^{3},\quad \delta =-\arg \left( a_{13}^{\left( U\right) }\right) . \end{aligned}$$
(3.6)

Here we assume that the \(\mathcal {O}(1)\) dimensionless couplings \(a_{ij}^{\left( U,D\right) }\) (\(i,j=1,2,3\)) in Eq. ( 3.1) are real except for \(a_{13}^{\left( U\right) }\). It is noteworthy that Eqs. (3.4)–(3.6) give an elegant description of the SM quark masses and mixing angles in terms of the Wolfenstein parameter \( \lambda =0.225\) and of parameters of order unity. It is worth commenting that the observables in the quark sector are connected with the electroweak symmetry breaking scale \(v=246\) GeV through their power dependence on the Wolfenstein parameter \(\lambda =0.225\), with \(\mathcal {O}(1)\) coefficients.

The Wolfenstein parameterization [105] of the CKM matrix is given by

$$\begin{aligned} V_{W}\simeq \left( \begin{array}{ccc} 1-\frac{\lambda ^{2}}{2} &{} \lambda &{} A\lambda ^{3}(\rho -i\eta ) \\ -\lambda &{} 1-\frac{\lambda ^{2}}{2} &{} A\lambda ^{2} \\ A\lambda ^{3}(1-\rho -i\eta ) &{} -A\lambda ^{2} &{} 1 \end{array} \right) , \end{aligned}$$
(3.7)

with

$$\begin{aligned}&\lambda =0.22535\pm 0.00065,\quad \quad A=0.811_{-0.012}^{+0.022}, \end{aligned}$$
(3.8)
$$\begin{aligned}&\overline{{\rho }} =0.131_{-0.013}^{+0.026},\quad \quad \overline{{ \eta }}=0.345_{-0.014}^{+0.013}, \end{aligned}$$
(3.9)
$$\begin{aligned}&\overline{{\rho }} \simeq \rho \left( 1-\frac{{\lambda }^{2}}{2}\right) ,\quad \quad \overline{{\eta }}\simeq \eta \left( 1-\frac{{\lambda }^{2}}{2} \right) . \end{aligned}$$
(3.10)

The comparison with Eq. (3.7) leads to the following relations:

$$\begin{aligned} a_{33}^{\left( U\right) }&\simeq 1,\quad \quad \!\! a_{23}^{\left( U\right) }\simeq 0.81,\quad \quad \!\! a_{13}^{\left( U\right) }\simeq -0.3e^{i\delta },\quad \quad \!\!\delta =67^{\circ }, \nonumber \\ a_{22}^{\left( U\right) }&\simeq \frac{m_{c}}{\lambda ^{4}m_{t}}\simeq 1.43,\quad \quad \!\! a_{11}^{\left( U\right) }\simeq \frac{m_{u}}{\lambda ^{8}m_{t}}\simeq 1.27, \end{aligned}$$
(3.11)

then it follows that \(a_{13}^{\left( U\right) }\) is required to be complex, as previously assumed and its magnitude is a bit smaller than the remaining \( \mathcal {O}(1)\) coefficients.

Assuming that the hierarchy of the SM quark masses and quark mixing matrix elements arises from the \(Z_{4}\) and \(Z_{12}\) symmetries, we set \(a_{21}^{\left( D\right) }=a_{22}^{\left( D\right) }\). We fit the parameters \( a_{ij}^{\left( D\right) }\) (\(i\ne j\)) in Eq. (3.1) to reproduce the down-type quark masses and quark mixing parameters. The results are shown in Table 1 for the following best-fit values:

$$\begin{aligned} a_{11}^{\left( D\right) }\simeq 0.84,\quad a_{12}^{\left( D\right) }\simeq 0.4,\quad a_{22}^{\left( D\right) }\simeq 0.57,\quad a_{33}^{\left( D\right) }\simeq 1.42.\nonumber \\ \end{aligned}$$
(3.12)

The obtained quark masses and CKM parameters are consistent with the experimental data. The values of these observables as well as the quark masses together with the experimental data are shown in Table 1. The experimental values of the quark masses, which are given at the \(M_{Z}\) scale, have been taken from Ref. [106] (which are similar to those in [107]), whereas the experimental values of the CKM matrix elements and the Jarlskog invariant \(J\) are taken from Ref. [12]. As seen from Table 1, all observables in the quark sector are in excellent agreement with the experimental data, excepting \(\bigl |V_{td}\bigr |\), which turns out to be larger by a factor \(\sim 1.3\) than its corresponding experimental value, and naively deviated 8 sigma away from it.

Table 1 Model and experimental values of the quark masses and CKM parameters

The scalar potential

To build a \(SU\left( 3\right) _{C}\otimes SU\left( 3\right) _{L}\otimes U\left( 1\right) _{X}\otimes S_{3}\) invariant scalar potential it is necessary to decompose the direct product of \(S_{3}\) representations into irreducible \(S_{3}\) representations. The \(S_{3}\) group has three irreducible representations that can be characterized by their dimension, i.e., \(\mathbf {2}\), \(\mathbf {1}\) and \(\mathbf {1^{\prime }}\). With the multiplication rules of the \(S_{3}\) group given in the appendix, we have to assign to the scalar fields in the \(S_{3}\) irreps and build the corresponding scalar potential invariant under the symmetry group.

Since all singlet scalars acquire VEVs at a scale much larger than \(v_{\chi } \), they are very heavy and thus the mixing between these scalar singlets and the \(SU\left( 3\right) _{L}\) scalar triplets can be neglected. For the sake of simplicity we assume a CP scalar potential with only real couplings as done in Refs. [8591, 108]. Then the renormalizable low energy scalar potential of the model is constructed with the \(S_{3}\) doublet \(\Phi =\left( \eta ,\chi \right) \) and the non-trivial \(S_{3}\) singlet \(\rho \) fields, in the way invariant under the group \(SU(3)_{C}\otimes SU\left( 3\right) _{L}\otimes U\left( 1\right) _{X}\otimes S_{3}\). The renormalizable low energy scalar potential is given by

$$\begin{aligned} V_{H}&= \mu _{\rho }^{2}(\rho ^{\dagger }\rho )+\mu _{\Phi }^{2}\left( \Phi ^{\dagger }\Phi \right) _{\mathbf {1}}+\lambda _{1}(\rho ^{\dagger }\rho )(\rho ^{\dagger }\rho ) \nonumber \\&+\,\lambda _{2}\left( \Phi ^{\dagger }\Phi \right) _{\mathbf {1}}\left( \Phi ^{\dagger }\Phi \right) _{\mathbf {1}}+\lambda _{3}\left( \Phi ^{\dagger }\Phi \right) _{\mathbf {1}^{\prime }}\left( \Phi ^{\dagger }\Phi \right) _{ \mathbf {1}^{\prime }} \nonumber \\&+\,\lambda _{4}\left( \Phi ^{\dagger }\Phi \right) _{\mathbf {2}}\left( \Phi ^{\dagger }\Phi \right) _{\mathbf {2}}+\lambda _{5}(\rho ^{\dagger }\rho )\left( \Phi ^{\dagger }\Phi \right) _{\mathbf {1}} \nonumber \\&+\,\lambda _{6}\left( (\rho ^{\dagger }\Phi )\left( \Phi ^{\dagger }\rho \right) \right) _{\mathbf {1}}\!+\!f\left[ \varepsilon ^{ijk}\left( \Phi _{i}\Phi _{j}\right) _{\mathbf {1}^{\prime }}\rho _{k}\!+\!h.c\right] ,\nonumber \\ \end{aligned}$$
(4.1)

where \(\Phi _{i}=\left( \eta _{i},\chi _{i}\right) \) is a \(S_{3}\) doublet with \(i=1,2,3\).

The \(S_{3}\) symmetry in the quadratic term of the scalar potential is softly broken because the vacuum expectation values of the scalar fields \(\eta \) and \(\chi \) contained in the \(S_{3}\) doublet \(\Phi \) satisfy the hierarchy \( v_{\chi }\gg v_{\eta }\).

Then we include the quadratic \(S_{3}\) soft-breaking terms \(\left( \mu _{\eta }^{2}-\mu _{\chi }^{2}\right) \left( \eta ^{\dagger }\eta \right) \) and \(\mu _{\eta \chi }^{2}\left( \chi ^{\dagger }\eta \right) +h.c.\) as done in Refs. [103, 104], and we use the \(S_{3}\) multiplication rules to rewrite the low energy scalar potential as follows:

$$\begin{aligned} V_{H}&=\mu _{\rho }^{2}(\rho ^{\dagger }\rho )\!+\!\mu _{\eta }^{2}\left( \eta ^{\dagger }\eta \right) \!+\!\mu _{\chi }^{2}\left( \chi ^{\dagger }\chi \right) \!+\!\mu _{\eta \chi }^{2}\left[ \left( \chi ^{\dagger }\eta \right) \right. \nonumber \\&\quad \left. +\left( \eta ^{\dagger }\chi \right) \right] \!+\!\lambda _{1}(\rho ^{\dagger }\rho )^{2}\!+\!\left( \lambda _{2}\!+\!\lambda _{4}\right) \left[ \left( \chi ^{\dagger }\chi \right) ^{2}\!+\!(\eta ^{\dagger }\eta )^{2}\right] \nonumber \\&\quad +\lambda _{5}\left[ (\rho ^{\dagger }\rho )(\chi ^{\dagger }\chi )+(\rho ^{\dagger }\rho )(\eta ^{\dagger }\eta )\right] \nonumber \\&\quad +2\left( \lambda _{2}-\lambda _{4}\right) \left( \chi ^{\dagger }\chi \right) \left( \eta ^{\dagger }\eta \right) +2\left( \lambda _{4}-\lambda _{3}\right) \left( \chi ^{\dagger }\eta \right) \nonumber \\&\quad \times \left( \eta ^{\dagger }\chi \right) +\lambda _{6}\left[ \left( \chi ^{\dagger }\rho \right) (\rho ^{\dagger }\chi )+\left( \eta ^{\dagger }\rho \right) (\rho ^{\dagger }\eta )\right] \nonumber \\&\quad +\left( \lambda _{3}+\lambda _{4}\right) \left[ \left( \chi ^{\dagger }\eta \right) ^{2}+\left( \eta ^{\dagger }\chi \right) ^{2}\right] \nonumber \\&\quad +2f\left( \varepsilon ^{ijk}\eta _{i}\chi _{j}\rho _{k}+h.c\right) . \end{aligned}$$
(4.2)

It is noteworthy that the \(S_{3}\) soft-breaking term \(\mu _{\eta \chi }^{2}\left( \chi ^{\dagger }\eta \right) +h.c.\) does not play an important role for the minimization of the scalar potential, nor for the generation of the physical scalar masses Refs. [103, 104].

From the previous expressions and from the scalar potential minimization conditions, the following relations are obtained:

$$\begin{aligned}&-\mu _{\chi }^{2}\!=\!\left( \lambda _{2}\!+\!\lambda _{4}\right) v _{\chi }^{2}\!+\!\frac{\lambda _{5}}{2}v_{\rho }^{2}\!+\!\left( \lambda _{2}-\lambda _{4}\right) v_{\eta }^{2}- \sqrt{2}\frac{fv_{\rho }v_{\eta }}{\upsilon _{\chi }} , \nonumber \\&-\mu _{\eta }^{2}\!=\!\left( \lambda _{2}+\lambda _{4}\right) v_{\eta }^{2}\!+\!\frac{\lambda _{5}}{2}v_{\rho }^{2}\!+\!\left( \lambda _{2}-\lambda _{4}\right) v_{\chi }^{2}-\sqrt{2}\frac{fv_{\chi }v_{\rho }}{v_{\eta }}, \nonumber \\&-\mu _{\rho }^{2}=\lambda _{1}v_{\rho }^{2}+\frac{\lambda _{5}}{2}\left( v _{\chi }^{2}+v_{\eta }^{2}\right) -\sqrt{2}\frac{fv_{\chi }v_{\eta }}{v_{\rho }}. \end{aligned}$$
(4.3)

Considering the quartic scalar couplings of the same order of magnitude, we find from the previous relations that the trilinear scalar coupling \(f\) has to be of the order of \(v_{\chi }\). Furthermore, from Eq. 4.3, we get the following relation:

$$\begin{aligned} \mu _{\chi }^{2}-\mu _{\eta }^{2}+\left( 2\lambda _{4}+\sqrt{2}\frac{v_{\rho }}{v_{\eta }}\right) \left( \upsilon _{\chi }^{2}-v_{\eta }^{2}\right) =0. \end{aligned}$$
(4.4)

The previous relations imply that the negative quadratic couplings should satisfy \(\mu _{\chi }^{2}\sim -v_{\chi }^{2}\) and \(\mu _{\rho }^{2}\sim \mu _{\eta }^{2}\sim -v_{\rho }^{2}\sim -v_{\eta }^{2}\sim -v^{2}\), being \(v=246\) GeV. Therefore, the negative quadratic coupling for the \(SU(3)_{L}\) scalar triplet \(\chi \) is of the order of its squared VEV. The remaining negative quadratic couplings are of the order of the squared VEVs of the \(SU(3)_{L}\) scalar triplets \(\eta \) and \(\rho \).

From the low energy scalar potential given by Eq. (4.2), we find that the physical scalar fields at low energies have the following masses:

$$\begin{aligned} m_{h^{0}}^{2}&\!\simeq \! \frac{\left[ 8\lambda _{4}\lambda _{5}v_{\eta }^{2}v_{\rho }^{2}\!+\!16\lambda _{2}\lambda _{4}v_{\eta }^{4}\!+\!\left( 4\lambda _{1}\left( \lambda _{2}\!+\!\lambda _{4}\right) \!-\!\lambda _{5}^{2}\right) v_{\rho }^{4}\right] }{4\left( \lambda _{2}\!+\!\lambda _{4}\right) \left( v_{\eta }^{2}+v_{\rho }^{2}\right) }, \nonumber \\ m_{H_{1}^{0}}^{2}&\simeq \frac{fv_{\chi }}{\sqrt{2}}\left( \frac{v_{\rho }}{ v_{\eta }}+\frac{v_{\eta }}{v_{\rho }}\right) ,\nonumber \\ m_{A^{0}}^{2}&\simeq \frac{fv_{\chi }}{\sqrt{2}}\left( \frac{v_{\eta }}{ v_{\rho }}+\frac{v_{\rho }}{v_{\eta }}\right) , \nonumber \\ m_{H_{2}^{0}}^{2}&=m_{\overline{H}_{2}^{0}}^{2}\simeq 2\lambda _{4}v_{\chi }^{2}+\sqrt{2}fv_{\chi }\frac{v_{\rho }}{v_{\eta }}, \nonumber \\ m_{H_{3}^{0}}^{2}&\simeq \left( \lambda _{2}+\lambda _{4}\right) v_{\chi }^{2}, \nonumber \\ m_{H_{1}^{\pm }}^{2}&\simeq \sqrt{2}\left( \frac{v_{\rho }}{v_{\eta }}+ \frac{v_{\eta }}{v_{\rho }}\right) fv_{\chi }, \nonumber \\ m_{H_{2}^{\pm }}^{2}&\simeq \frac{\lambda _{6}}{2}\upsilon _{\chi }^{2}+ \sqrt{2}fv_{\chi }\frac{v_{\eta }}{v_{\rho }}, \nonumber \\ m_{G_{1}^{0}}^{2}&=m_{G_{2}^{0}}^{2}=m_{\overline{G} _{2}^{0}}^{2}=m_{G_{3}^{0}}^{2}=m_{G_{1}^{\pm }}^{2}=m_{G_{2}^{\pm }}^{2}=0. \end{aligned}$$
(4.5)

It is noteworthy that the physical scalar spectrum at low energies of our model includes: four massive charged Higgs (\(H_{1}^{\pm }\), \(H_{2}^{\pm }\)), one CP-odd Higgs (\(A^{0}\)), three neutral CP-even Higgs (\( h^{0},H_{1}^{0},H_{3}^{0}\)), and two neutral Higgs (\(H_{2}^{0},\overline{H} _{2}^{0}\)) bosons. Here we identify the scalar \(h^{0}\) with the SM-like \(126\) GeV Higgs boson observed at the LHC. Let us note that the neutral Goldstone bosons \(G_{1}^{0}\), \(G_{3}^{0}\), \(G_{2}^{0}\), \(\overline{G}_{2}^{0}\) are associated to the longitudinal components of the \(Z\), \(Z^{\prime }\), \(K^{0}\), and \(\overline{K}^{0}\)gauge bosons, respectively. Besides that, the charged Goldstone bosons \(G_{1}^{\pm }\) and \(G_{2}^{\pm }\) are associated to the longitudinal components of the \(W^{\pm }\) and \(K^{\pm }\) gauge bosons, respectively [78, 79, 8591].

In Appendix B we employ the method of Ref. [109] to show that the low energy scalar potential is stable when the following conditions are fulfilled:

$$\begin{aligned} \lambda _{1}>0,&\lambda _{2}>0,\lambda _{4}>0, \lambda _{6}>0,f>0, \nonumber \\ \lambda _{2}>\lambda _{3},&\lambda _{2}+\lambda _{4}>0, \lambda _{5}+\lambda _{6}>0, \nonumber \\ \lambda _{1}(\lambda _{2}+\lambda _{4})>\lambda _{5}^{2},&\lambda _{5}+\lambda _{6}>2\sqrt{\lambda _{1}\left( \lambda _{2}+\lambda _{4}\right) }. \end{aligned}$$
(4.6)

Conclusions

In this paper we proposed a model based on the symmetry group \(SU(3)_{C}\otimes SU\left( 3\right) _{L}\otimes U\left( 1\right) _{X}\otimes S_{3}\otimes Z_{2}\otimes Z_{4}\otimes Z_{12}\), which is an extension of the 331 model with \(\beta =- \frac{1}{\sqrt{3}}\) of Refs. [103, 104]. Our model successfully accounts for the observed SM quark mass and mixing pattern. The \(S_{3}\) and \(Z_{2}\) symmetries are crucial for reducing the number of parameters in the Yukawa terms for the quark sector and decoupling the bottom quark from the light down and strange quarks. The observed hierarchy of the SM quark masses and quark mixing matrix elements arises from the \(Z_{4}\) and \(Z_{12}\) symmetries, which are broken at a very high scale by the \(SU(3)_{L}\) scalar singlets (\(\sigma \),\(\zeta \)) and \(\tau \), charged under these symmetries, respectively. The Cabbibo mixing arises from the down-type quark sector whereas the up quark sector generates the remaining mixing angles. The SM quark masses are generated from Yukawa terms involving the \(SU(3)_{L}\) scalar triplets \(\eta \) and \(\rho \), which acquire VEVs at the electroweak scale \(v=246\) GeV. On the other hand, the exotic quark masses arise from Yukawa terms involving the \(SU(3)_{L}\) scalar triplet \(\chi \), which acquires a VEV at the TeV scale. The obtained values of the quark masses, the magnitudes of the CKM matrix elements, the CP violating phase, and the Jarlskog invariant are consistent with the experimental data. The complex phase responsible for CP violation in the quark sector has been assumed to come from a seven dimensional up-type quark Yukawa term.

References

  1. 1.

    G. Aad et al., [The ATLAS Collaboration], Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

  2. 2.

    S. Chatrchyan et al., [The CMS Collaboration], Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

  3. 3.

    T. Aaltonen et al., [CDF and D0 Collaborations], Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the tevatron. Phys. Rev. Lett. 109, 071804 (2012). arXiv:1207.6436 [hep-ex]

  4. 4.

    The CMS Collaboration, Observation of a new boson with a mass near 125 GeV, CMS-PAS-HIG-12-020

  5. 5.

    C. Kelso, de S. Pires, S. Profumo, F.S. Queiroz, P.S. Rodrigues da Silva. Eur. Phys. J. C 74, 2797 (2014). arXiv:1308.6630 [hep-ph]

  6. 6.

    S. Profumo, F.S. Queiroz, Eur. Phys. J. C 74, 2960 (2014). arXiv:1307.7802 [hep-ph]

    Article  ADS  Google Scholar 

  7. 7.

    C. Kelso, H.N. Long, R. Martinez, F.S. Queiroz, Phys. Rev. D 90, 113011 (2014). arXiv:1408.6203 [hep-ph]

    Article  ADS  Google Scholar 

  8. 8.

    R. Martinez, J. Nisperuza, F. Ochoa, J.P. Rubio, Phys. Rev. D 90, 095004 (2014). arXiv:1408.5153 [hep-ph]

    Article  ADS  Google Scholar 

  9. 9.

    S.L. Glashow, Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  10. 10.

    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  11. 11.

    A. Salam, in Elementary Particle Theory: Relativistic Groups and Analyticity (Nobel Symposium No. 8) ed. by N.Svartholm (Almqvist and Wiksell, Stockholm, 1968), p. 367

  12. 12.

    J. Beringer et al., Particle Data Group, Phys. Rev. D 86, 010001 (2012)

  13. 13.

    H. Fritzsch, Phys. Lett. B 70, 436 (1977)

    Article  ADS  Google Scholar 

  14. 14.

    H. Fritzsch, Phys. Lett. B 73, 317 (1978)

    Article  ADS  Google Scholar 

  15. 15.

    H. Fritzsch, Nucl. Phys. B 155, 189 (1979)

    Article  ADS  Google Scholar 

  16. 16.

    H. Fritzsch, J. Planck, Phys. Lett. B 237, 451 (1990)

    Article  ADS  Google Scholar 

  17. 17.

    D. Du, Z.Z. Xing, Phys. Rev. D 48, 2349 (1993)

  18. 18.

    Z.Z. Xing, D. Yang, S. Zhou, arXiv:1004.4234v2 [hep-ph]

  19. 19.

    A.C.B. Machado, J.C. Montero, V. Pleitez, arXiv:1108.1767 [hep-ph]

  20. 20.

    J.E. Kim, M.S. Seo, JHEP 1102, 097 (2011). arXiv:hep-ph/1005.4684

  21. 21.

    R. Barbieri, G.R. Dvali, A. Strumia, Z. Berezhiani, L.J. Hall, Nucl. Phys. B 432, 49 (1994). arXiv:hep-ph/9405428

    Article  ADS  Google Scholar 

  22. 22.

    Z. Berezhiani, Phys. Lett. B 355, 481 (1995). arXiv:hep-ph/9503366

    Article  ADS  Google Scholar 

  23. 23.

    A.E. Cárcamo Hernández, R. Rahman, arXiv:1007.0447 [hep-ph]

  24. 24.

    B.A. Dobrescu, Phys. Lett. B 461, 99 (1999). arXiv:hep-ph/9812349

    Article  ADS  Google Scholar 

  25. 25.

    G. Altarelli, F. Feruglio, Nucl. Phys. B 720, 64 (2005). arXiv:hep-ph/0504165

    Article  ADS  Google Scholar 

  26. 26.

    A.E. Cárcamo Hernández, C.O. Dib, H. Nicolás Neill, A.R. Zerwekh, JHEP 1202, 132 (2012). arXiv:1201.0878 [hep-ph]

  27. 27.

    C. Alvarado, A. Aranda, O. Corradini, A.D. Rojas, E. Santos-Rodriguez, Phys. Rev. D 86, 036010 (2012). arXiv:1206.5216 [hep-ph]

    Article  ADS  Google Scholar 

  28. 28.

    K.S. Babu, R.N. Mohapatra, Phys. Rev. Lett. 74, 2418 (1995). arXiv:hep-ph/9410326

    Article  ADS  Google Scholar 

  29. 29.

    T.P. Cheng, M. Sher, Phys. Rev. D 35, 3484 (1987)

    Article  ADS  Google Scholar 

  30. 30.

    K. Matsuda, H. Nishiura, Phys. Rev. D 74, 033014 (2006)

    Article  ADS  Google Scholar 

  31. 31.

    A.E. Cárcamo Hernández, R. Martinez, J.-A. Rodriguez, Eur. Phys. J. C 50, 935 (2007)

  32. 32.

    A.E. Cárcamo Hern ández, R. Martinez, J.A. Rodriguez, AIP Conf. Proc. 1026, 272 (2008)

  33. 33.

    H. Okada, K. Yagyu, arXiv:1405.2368 [hep-ph]

  34. 34.

    H. Okada, K. Yagyu, Phys. Rev. D 89, 053008 (2014). arXiv:1311.4360 [hep-ph]

    Article  ADS  Google Scholar 

  35. 35.

    A.E. Cárcamo Hernández, I.d.M. Varzielas, arXiv:1410.2481 [hep-ph]

  36. 36.

    S.F. King, C. Luhn, arXiv:1301.1340 [hep-ph]

  37. 37.

    G. Altarelli, F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010). arXiv:1002.0211 [hep-ph]

    Article  ADS  Google Scholar 

  38. 38.

    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010). arXiv:1003.3552 [hep-th]

    Article  ADS  MATH  Google Scholar 

  39. 39.

    E. Ma, G. Rajasekaran, Phys. Rev. D 64, 113012 (2001)

    Article  ADS  Google Scholar 

  40. 40.

    G. Altarelli, F. Feruglio, Nucl. Phys. B 741, 215 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. 41.

    S.L. Chen, M. Frigerio, E. Ma, Nucl. Phys. B 724, 423 (2005)

    Article  ADS  Google Scholar 

  42. 42.

    A. Zee, Phys. Lett. B 630, 58 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  43. 43.

    T. Fukuyama, H. Sugiyama, K. Tsumura, Phys. Rev. D 83, 056016 (2011). arXiv:1012.4886 [hep-ph]

  44. 44.

    I. de Medeiros Varzielas, L. Lavoura, J. Phys.G 40, 085002 (2013) arXiv:1212.3247 [hep-ph]

  45. 45.

    P.M. Ferreira, L. Lavoura, P.O. Ludl, arXiv:1306.1500 [hep-ph]

  46. 46.

    A.E. Cárcamo Hernández, I.d.M. Varzielas, S.G. Kovalenko, H. Pas, I. Schmidt, Phys. Rev. D 88, 076014 (2013). arXiv:1307.6499 [hep-ph]

  47. 47.

    P.V. Dong, L.T. Hue, H.N. Long, D.V. Soa, Phys. Rev. D 81, 053004 (2010). arXiv:1001.4625 [hep-ph]

    Article  ADS  Google Scholar 

  48. 48.

    M.D. Campos, A.E. Cárcamo Hérnandez, S.G. Kovalenko, I. Schmidt, E. Schumacher, Phys. Rev. D 90, 016006 (2014). arXiv:1403.2525 [hep-ph]

  49. 49.

    A.C.B. Machado, J.C. Montero, V. Pleitez, Int. J. Mod. Phys. A 27, 1250068 (2012). arXiv:1108.1767 [hep-ph]

    Article  ADS  Google Scholar 

  50. 50.

    A.C.B. Machado, J.C. Montero, V. Pleitez, Phys. Lett. B 697, 318 (2011). arXiv:1011.5855 [hep-ph]

    Article  ADS  Google Scholar 

  51. 51.

    Y. Kajiyama, H. Okada, K. Yagyu, JHEP 1310, 196 (2013). arXiv:1307.0480 [hep-ph]

    Article  ADS  Google Scholar 

  52. 52.

    M.D. Campos, A.E. Cárcamo Hérnandez, H. Pas, E. Schumacher, arXiv:1408.1652 [hep-ph]

  53. 53.

    A.E. Cárcamo Hérnandez, S.G. Kovalenko, I. Schmidt, arXiv:1411.2913 [hep-ph]

  54. 54.

    F. Feruglio, C. Hagedorn, Y. Lin, L. Merlo, Nucl. Phys. B 775, 120 (2007)

    Article  ADS  Google Scholar 

  55. 55.

    M.C. Chen, K.T. Mahanthappa, Phys. Lett. B 652, 34 (2007)

    Article  ADS  Google Scholar 

  56. 56.

    S. Morisi, M. Nebot, K.M. Patel, E. Peinado, J.W.F. Valle, arXiv:1303.4394 [hep-ph]

  57. 57.

    I. de Medeiros Varzielas, D. Pidt, arXiv:1307.0711 [hep-ph]

  58. 58.

    H. Ishimori, S.F. King, H. Okada, M. Tanimoto, arXiv:1411.5845 [hep-ph]

  59. 59.

    S. Pakvasa, H. Sugawara, Phys. Lett. B 73, 61 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  60. 60.

    E. Ma, Phys. Rev. D 61, 033012 (2000). arXiv:hep-ph/9909249

    Article  ADS  Google Scholar 

  61. 61.

    W. Grimus, L. Lavoura, JHEP 0508, 013 (2005). arXiv:hep-ph/0504153

    Article  ADS  MathSciNet  Google Scholar 

  62. 62.

    P.V. Dong, H.N. Long, C.H. Nam, V.V. Vien, Phys. Rev. D 85, 053001 (2012). arXiv:1111.6360 [hep-ph]

    Article  ADS  Google Scholar 

  63. 63.

    F. González Canales, A. Mondragó n, M. Mondragón, U.J. Saldana Salazar, L. Velasco-Sevilla, Phys. Rev. D 88, 096004 (2013). arXiv:1304.6644 [hep-ph]

  64. 64.

    Y. Kajiyama, H. Okada, K. Yagyu, arXiv:1309.6234 [hep-ph]

  65. 65.

    I.d.M. Varzielas, D. Pidt, arXiv:1307.0711 [hep-ph]

  66. 66.

    G. Bhattacharyya, I.M. Varzielas, P. Leser, Phys. Rev. Lett. 109, 241603 (2012). arXiv:1210.0545 [hep-ph]

    Article  ADS  Google Scholar 

  67. 67.

    C.C. Nishi, arXiv:1306.0877 [hep-ph]

  68. 68.

    P.H. Frampton, T.W. Kephart, S. Matsuzaki, Phys. Rev. D 78, 073004 (2008). arXiv:0807.4713 [hep-ph]

    Article  ADS  Google Scholar 

  69. 69.

    P.H. Frampton, C.M. Ho, T.W. Kephart, Phys. Rev. D 89, 027701 (2014). arXiv:1305.4402 [hep-ph]

    Article  ADS  Google Scholar 

  70. 70.

    A.E. Cárcamo Hernández, R. Martinez. arXiv:1501.05937 [hep-ph]

  71. 71.

    A.E. Cárcamo Hernández, R. Martinez. arXiv:1501.07261 [hep-ph]

  72. 72.

    L.E. Ibanez, G.G. Ross, Phys. Lett. B 332, 100 (1994)

  73. 73.

    P. Binetruy, P. Ramond, Phys. Lett. B 350, 49 (1995)

    Article  ADS  Google Scholar 

  74. 74.

    Y. Nir, Phys. Lett. B 354, 107 (1995)

    Article  ADS  Google Scholar 

  75. 75.

    V. Jain, R. Shrock, Phys. Lett. B 352, 83 (1995)

  76. 76.

    E. Dudas, S. Pokorski, C.A. Savoy, Phys. Lett. B 356, 45 (1995)

    Article  ADS  Google Scholar 

  77. 77.

    E. Dudas, S. Pokorski, C.A. Savoy, Nucl. Phys. B 369, 255 (1996)

    Google Scholar 

  78. 78.

    F. Pisano, V. Pleitez, Phys. Rev. D 46, 410 (1992)

    Article  ADS  Google Scholar 

  79. 79.

    N. Tuan Anh, N. Anh Ky, H. Ngoc Long, Int. J. Mod. Phys. A 16, 541 (2001)

  80. 80.

    P.H. Frampton, Phys. Rev. Lett. 69, 2889 (1992)

  81. 81.

    R. Foot, H.N. Long, T.A. Tran, Phys. Rev. D 50, R34 (1994)

    Article  ADS  Google Scholar 

  82. 82.

    H.N. Long, Phys. Rev. D 53, 437 (1996)

  83. 83.

    H.N. Long, Phys. Rev. D 54, 4691 (1996)

  84. 84.

    H.N. Long, Mod. Phys. Lett. A 13, 1865 (1998)

  85. 85.

    R.A. Diaz, R. Martinez, J. Mira, J.A. Rodriguez, Phys. Lett. B 552, 287 (2003). arXiv:hep-ph/0208176

    Article  ADS  MathSciNet  Google Scholar 

  86. 86.

    R. A. Diaz, R. Martinez, F. Ochoa. Phys. Rev. D 69, 095009 (2004)

  87. 87.

    R.A. Diaz, R. Martinez, Ochoa. Phys. Rev. D 72, 035018 (2005)

    Article  ADS  Google Scholar 

  88. 88.

    F. Ochoa, R. Martinez, Phys. Rev. D 72, 035010 (2005)

  89. 89.

    A. Carcamo, R. Martinez, F. Ochoa, Phys. Rev. D 73, 035007 (2006)

    Article  ADS  Google Scholar 

  90. 90.

    C. Alvarado, R. Martínez, F. Ochoa, Phys. Rev. D 86, 025027 (2012)

    Article  ADS  Google Scholar 

  91. 91.

    A.E. Cárcamo Hernández, R. Martínez, F. Ochoa, Phys. Rev. D 87, 075009 (2013). arXiv:1302.1757 [hep-ph]

  92. 92.

    J.S. Bell, R. Jackiw, Nuovo Cim. A 60, 47 (1969)

    Article  ADS  Google Scholar 

  93. 93.

    S.L. Adler, Phys. Rev. 177, 2426 (1969)

    Article  ADS  Google Scholar 

  94. 94.

    D.J. Gross, R. Jackiw, Phys. Rev. D 6, 477 (1972)

    Article  ADS  Google Scholar 

  95. 95.

    H. Georgi, S.L. Glashow, Phys. Rev. D 6, 429 (1972)

    Article  ADS  Google Scholar 

  96. 96.

    S. Okubo, Phys. Rev. D 16, 3528 (1977)

    Article  ADS  Google Scholar 

  97. 97.

    J. Banks, H. Georgi, Phys. Rev. 14, 1159 (1976)

    ADS  Google Scholar 

  98. 98.

    P.H. Frampton, in Proc. Particles, Strings, and Cosmology (PASCOS), ed. by K.C. Wali (Syracuse, NY, 1994)

  99. 99.

    R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  100. 100.

    R.D. Peccei, H.R. Quinn, Phys. Rev. D 16, 1791 (1977)

    Article  ADS  Google Scholar 

  101. 101.

    P.B. Pal, Phys. Rev. D 52, 1659 (1995)

    Article  ADS  Google Scholar 

  102. 102.

    J.K. Mizukoshi, C.A. de S. Pires, F.S. Queiroz, P.S. Rodrigues da Silva, Phys. Rev. D 83, 065024 (2011). arXiv:1010.4097 [hep-ph]

  103. 103.

    M.E. Cataño, R. Martinez, F. Ochoa, Phys. Rev. D 86, 073015 (2012). arXiv:1206.1966 [hep-ph]

    Article  ADS  Google Scholar 

  104. 104.

    A.E. C árcamo Hernández, M.E. Cataño, R. Martínez, Phys. Rev. D 90, 073001 (2014). arXiv:1407.5217 [hep-ph]

  105. 105.

    L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983)

    Article  ADS  Google Scholar 

  106. 106.

    K. Bora, arXiv:1206.5909 [hep-ph]

  107. 107.

    Z.Z. Xing, H. Zhang, S. Zhou, Phys. Rev. D 77, 113016 (2008). arXiv:0712.1419 [hep-ph]

  108. 108.

    A.C.B. Machado, J.C. Montero, V. Pleitez, Phys. Lett. B 697, 318 (2011). arXiv:1011.5855 [hep-ph]

    Article  ADS  Google Scholar 

  109. 109.

    M. Maniatis, A. von Manteuffel, O. Nachtmann, F. Nagel, Eur. Phys. J. C 48, 805 (2006). hep-ph/0605184

Download references

Acknowledgments

A.E.C.H was supported by Fondecyt (Chile), Grant No. 11130115 and by DGIP internal Grant No. 111458. R.M. was supported by COLCIENCIAS and by Fondecyt (Chile), Grant No. 11130115.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. E. Cárcamo Hernández.

Appendices

Appendix A: The product rules for \(S_{3}\)

The \(S_{3}\) group has three irreducible representations that can be characterized by their dimension, i.e., \(\mathbf {2}\), \(\mathbf {1}\) and \( \mathbf {1^{\prime }}\). Considering two \(S_{3}\) doublet representations \( (x_{1},x_{2})\) and \((y_{1},y_{2})\), the direct product can be decomposed as follows [38]:

$$\begin{aligned} \left( \begin{array}{c} x_{1} \\ x_{2} \end{array} \right) _{\mathbf {2}}\otimes \left( \begin{array}{c} y_{1} \\ y_{2} \end{array} \right) _{\mathbf {2}}&= \left( x_{1}y_{1}+x_{2}y_{2}\right) _{\mathbf {1} }+\left( x_{1}y_{2}-x_{2}y_{1}\right) _{\mathbf {1}^{\prime }} \nonumber \\&+\left( \begin{array}{c} x_{1}y_{1}-x_{2}y_{2} \\ x_{1}y_{2}+x_{2}y_{1} \end{array} \right) _{\mathbf {2}}, \end{aligned}$$
(A.1)
$$\begin{aligned} \left( \begin{array}{c} x_{1} \\ x_{2} \end{array} \right) _{\mathbf {2}}\otimes \left( y\right) _{\mathbf {1}^{\prime }}&= \left( \begin{array}{c} -x_{2}y \\ x_{1}y \end{array} \right) _{\mathbf {2}}, \nonumber \\ \left( x\right) _{\mathbf {1}^{\prime }}\otimes \left( y\right) _{\mathbf {1} ^{\prime }}&= \left( xy\right) _{\mathbf {1}}. \end{aligned}$$
(A.2)

With these multiplication rules we have to assign to the scalar fields in the \(S_{3}\) irreps and build the corresponding scalar potential invariant under the symmetry group.

Appendix B: Stability conditions of the low energy scalar potential

In this subsection we are going to determine the conditions required to have a stable scalar potential by following the method described in Ref. [109]. The gauge invariant and renormalizable low energy scalar potential as a function of the fields \(\phi _{1}=\chi \), \(\phi _{2}=\eta \), and \(\phi _{3}=\rho \) is a linear hermitian combination of the following terms:

$$\begin{aligned} \phi _{i}\phi _{j},\;\;\;\;\;\;\phi _{i}\phi _{j}\phi _{k}\phi _{l} \end{aligned}$$
(B.1)

where \(i,j,k,l=\phi _{1}\), \(\phi _{2}\), and \(\phi _{3}\). To discuss the stability of the potential, its minimum, and its gauge invariance one can make the arrangement of the scalar fields by using \(2\times 2\) hermitian matrices as follows:

$$\begin{aligned} \widetilde{K}_{(\phi _{i}\phi _{j})}&= \left( \begin{array}{cc} \phi _{i}^{\dagger }\phi _{i} &{} \phi _{i}^{\dagger }\phi _{j} \\ \phi _{j}^{\dagger }\phi _{i} &{} \phi _{j}^{\dagger }\phi _{j} \end{array} \right) , \nonumber \\&= \frac{1}{2}\left( K_{0\left( \phi _{i}\phi _{j}\right) }1_{2\times 2}+K_{a\left( \phi _{i}\phi _{j}\right) }\sigma ^{a}\right) \end{aligned}$$
(B.2)

where \((\phi _{i}\phi _{j})=\rho \eta ,\rho \chi ,\eta \chi \), \(\sigma ^{a}\) (\(a=1,2,3\)) are the Pauli matrices and \(1_{2\times 2}\) is the identity matrix. From the previous expressions one can build the following bilinear terms as functions of the scalar fields:

$$\begin{aligned} K_{0\left( \phi _{i}\phi _{j}\right) }&= \phi _{i}^{\dagger }\phi _{i}+\phi _{j}^{\dagger }\phi _{j}, \nonumber \\ K_{a\left( \phi _{i}\phi _{j}\right) }&= \sum _{i,j}\left( \phi _{i}^{\dagger }\phi _{j}\right) \sigma _{ij}^{a}. \end{aligned}$$
(B.3)

The properties of the potential can be analyzed in terms of \( K_{0\left( \phi _{i}\phi _{j}\right) }\) and \(\mathbf {K}_{\left( \phi _{i}\phi _{j}\right) }\) with \(\phi _{i}\phi _{j}=\rho \eta ,\rho \chi ,\eta \chi \) in the domain \(K_{0}\ge 0\) y \(K_{0}^{2}\ge \mathbf {K}^{2}\). Defining \(\mathbf {\kappa }=\mathbf {K}/K_{0}\) the potential can be written as

$$\begin{aligned} V&= V_{2}+V_{4}, \nonumber \\ V_{2}&= \sum _{(\phi _{i}\phi _{j})}K_{0(\phi _{i}\phi _{j})}\mathbf {J}_{2(\phi _{i}\phi _{j})}(\mathbf {\kappa }),\;\;\;\; \nonumber \\ \mathbf {J}_{2{(\phi _{i}\phi _{j})}}(\mathbf {\kappa })&= \xi _{0(\phi _{i}\phi _{j})}+\mathbf {\xi }_{(\phi _{i}\phi _{j})}^{T}\mathbf {\kappa }_{(\phi _{i}\phi _{j})}, \nonumber \\ V_{4}&= \sum _{(\phi _{i}\phi _{j})}K_{0(\phi _{i}\phi _{j})}^{2}\mathbf {J} _{4(\phi _{i}\phi _{j})}(\mathbf {\kappa }),\;\;\; \nonumber \\ \;\mathbf {J}_{4{(\phi _{i}\phi _{j})}}(\mathbf {\kappa })&= \eta _{00(\phi _{i}\phi _{j})}+2\mathbf {\eta }_{(\phi _{i}\phi _{j})}^{T}\mathbf {\kappa }_{(\phi _{i}\phi _{j})} \nonumber \\&+\mathbf {\kappa }_{(\phi _{i}\phi _{j})}^{T}E_{(\phi _{i}\phi _{j})}\mathbf {\kappa }_{(\phi _{i}\phi _{j})}, \end{aligned}$$
(B.4)

where \(E_{(\phi _{i}\phi _{j})}\) is a \(3\times 3\) matrix and the functions \( J_{2{(\phi _{i}\phi _{j})}}(\mathbf {\kappa })\) and \(J_{4{(\phi _{i}\phi _{j})}}( \mathbf {\kappa })\) are defined in the domain \(|\mathbf {\kappa }|\le 1\). The stability of the scalar potential requires that it has to be bounded from below. The stability is determined from the behavior of \(V\) in the limit \( K_{0}\rightarrow \infty \), i.e.,

$$\begin{aligned} J_{4{(\phi _{i}\phi _{j})}}(\mathbf {\kappa })\ge 0, \end{aligned}$$
(B.5)

for all \(|\mathbf {\kappa }|\le 1\). To impose \(J_{4{(\phi _{i}\phi _{j})}}(\mathbf { \kappa })\) to be positively defined it is enough to consider the values of all stationary points in the domain \(|\kappa |<1\) and \(|\kappa |=1\). This results in a bound for \(\eta _{00{(\phi _{i}\phi _{j})}}\), \(\mathbf {\eta }_{0{ (\phi _{i}\phi _{j})}}\), and \(E{(\phi _{i}\phi _{j})}\), which parametrize the quartic terms of the potential included in \(V_{4}\).

For \(|\mathbf {\kappa }|<1\) the stationary points should satisfy

$$\begin{aligned} E\mathbf {\kappa }_{(\phi _{i}\phi _{j})}=-\mathbf {\eta }_{(\phi _{i}\phi _{j})},\;\;\;\;\;\;|\mathbf {\kappa }|<1. \end{aligned}$$
(B.6)

For the case where \(\det E\ne 0\), the following relation is obtained:

$$\begin{aligned} \;J_{4(\phi _{i}\phi _{j})}(\mathbf {\kappa })|_{est}=\eta _{00{(\phi _{i}\phi _{j})}}-\mathbf {\eta }_{(\phi _{i}\phi _{j})}^{T}E^{-1}\mathbf {\eta }_{(\phi _{i}\phi _{j})}. \end{aligned}$$
(B.7)

For \(|\mathbf {\kappa }|=1\) the stationary points are obtained from the function:

$$\begin{aligned} F_{4(\phi _{i}\phi _{j})}(\mathbf {\kappa })=J_{4(\phi _{i}\phi _{j})}(\kappa )+u(1-\mathbf {\kappa }^{2}), \end{aligned}$$
(B.8)

where \(u\) is a Lagrange multiplier that satisfies the following condition:

$$\begin{aligned} (E_{(\phi _{i}\phi _{j})}-u)\mathbf {\kappa }&= -\mathbf {\eta }_{(\phi _{i}\phi _{j})}, \nonumber \\ \;J_{4(\phi _{i}\phi _{j})}(\mathbf {\kappa })|_{est}&= u+\eta _{00{(\phi _{i}\phi _{j})}} \nonumber \\&-\mathbf {\eta }_{(\phi _{i}\phi _{j})}^{T}(E_{(\phi _{i}\phi _{j})}-u)^{-1} \mathbf {\eta }_{(\phi _{i}\phi _{j})}. \end{aligned}$$
(B.9)

The stationary points of \(J_{4(\phi _{i}\phi _{j})}(\kappa )\) for \(|\kappa |\le 1\) can be obtained from:

$$\begin{aligned} f_{(\phi _{i}\phi _{j})}(u)&= J_{4{(\phi _{i}\phi _{j})}}(\mathbf {\kappa } )|_{est}>0, \nonumber \\ f_{(\phi _{i}\phi _{j})}^{\prime }\left( u\right)&> 0. \end{aligned}$$
(B.10)

Considering that the quartic terms of the scalar potential are dominant when the vacuum expectation values of the scalar fields take large values, these terms will be the most relevant to analyze the stability of the scalar potential. Following the method described in Ref. [109], we proceed to rewrite the quartic terms of the scalar potential in terms of bilinear combinations of the scalar fields. To this end, the bilinear combinations of the scalar fields are included in the following matrices:

$$\begin{aligned} \widetilde{K}_{\rho \eta }&= \left( \begin{array}{cc} \rho ^{\dagger }\rho &{} \eta ^{\dagger }\rho \\ \rho ^{\dagger }\eta &{} \eta ^{\dagger }\eta \end{array} \right) =\frac{1}{2}\left( K_{0\left( \rho \eta \right) }1_{2\times 2}+K_{a\left( \rho \eta \right) }\sigma ^{a}\right) , \nonumber \\ \widetilde{K}_{\rho \chi }&= \left( \begin{array}{cc} \rho ^{\dagger }\rho &{} \chi ^{\dagger }\rho \\ \rho ^{\dagger }\chi &{} \chi ^{\dagger }\chi \end{array} \right) =\frac{1}{2}\left( K_{0\left( \rho \chi \right) }1_{2\times 2}+K_{a\left( \rho \chi \right) }\sigma ^{a}\right) , \nonumber \\ \widetilde{K}_{\eta \chi }&= \left( \begin{array}{cc} \eta ^{\dagger }\eta &{} \chi ^{\dagger }\eta \\ \eta ^{\dagger }\chi &{} \chi ^{\dagger }\chi \end{array} \right) =\frac{1}{2}\left( K_{0\left( \eta \chi \right) }1_{2\times 2}+K_{a\left( \eta \chi \right) }\sigma ^{a}\right) , \nonumber \\&\end{aligned}$$
(B.11)

where \(\sigma ^{a}\) (\(a=1,2,3\)) are the Pauli matrices and \(1_{2\times 2}\) is the \(2\times 2\) identity matrix. From the previous expressions, we find that the bilinear combinations of the scalar fields appearing in Eq. (B.11) are given by

$$\begin{aligned}&K_{0\left( \rho \eta \right) } =\rho ^{\dagger }\rho +\eta ^{\dagger }\eta ,K_{0\left( \rho \chi \right) }=\rho ^{\dagger }\rho +\chi ^{\dagger }\chi , \nonumber \\&K_{0\left( \eta \chi \right) } =\eta ^{\dagger }\eta +\chi ^{\dagger }\chi , \nonumber \\&K_{a\left( \rho \eta \right) } =\left( \rho ^{\dagger }\rho \right) \sigma _{11}^{a}+\left( \eta ^{\dagger }\eta \right) \sigma _{22}^{a}+\left( \rho ^{\dagger }\eta \right) \sigma _{12}^{a}+\left( \eta ^{\dagger }\rho \right) \sigma _{21}^{a}, \nonumber \\&K_{a\left( \rho \chi \right) } =\left( \rho ^{\dagger }\rho \right) \sigma _{11}^{a}+\left( \chi ^{\dagger }\chi \right) \sigma _{22}^{a}+\left( \rho ^{\dagger }\chi \right) \sigma _{12}^{a}+\left( \chi ^{\dagger }\rho \right) \sigma _{21}^{a}, \nonumber \\&K_{a\left( \eta \chi \right) } =\left( \eta ^{\dagger }\eta \right) \sigma _{11}^{a}+\left( \chi ^{\dagger }\chi \right) \sigma _{22}^{a}+\left( \eta ^{\dagger }\chi \right) \sigma _{12}^{a}+\left( \chi ^{\dagger }\eta \right) \sigma _{21}^{a}.\nonumber \\ \end{aligned}$$
(B.12)

Since the stability of the scalar potential is determined from its quartic terms, the stationary solutions consistent with a stable scalar potential are described by the following functions:

$$\begin{aligned} f_{\rho \eta }\left( u\right)&= u\!+\!E_{00\left( \rho \eta \right) }\!-\!E_{a\left( \rho \eta \right) }\left( E_{\left( \rho \eta \right) }-u1_{3\times 3}\right) _{ab}^{-1}E_{b\left( \rho \eta \right) }, \nonumber \\ f_{\rho \chi }\left( u\right)&= u\!+\!E_{00\left( \rho \chi \right) }\!-\!E_{a\left( \rho \chi \right) }\left( E_{\left( \rho \chi \right) }\!-\!u1_{3\times 3}\right) _{ab}^{-1}E_{b\left( \rho \chi \right) }, \nonumber \\ f_{\eta \chi }\left( u\right)&= u\!+\!E_{00\left( \eta \chi \right) }\!-\!E_{a\left( \eta \chi \right) }\left( E_{\left( \eta \chi \right) }\!-\!u1_{3\times 3}\right) _{ab}^{-1}E_{b\left( \eta \chi \right) }, \nonumber \\ \end{aligned}$$
(B.13)

where, for the \(\rho \) and \(\eta \) fields, we have

$$\begin{aligned} E_{00\left( \rho \eta \right) }&= \frac{\lambda _{1}+\lambda _{2}+\lambda _{4}+\lambda _{5}}{4}, \nonumber \\ E_{a\left( \rho \eta \right) }&= \frac{\lambda _{1}-\lambda _{2}-\lambda _{4}}{4}\delta _{a3}, \nonumber \\ E_{\left( \rho \eta \right) }&= \frac{1}{4}\left( \begin{array}{ccc} \lambda _{6} &{} 0 &{} 0 \\ 0 &{} \lambda _{6} &{} 0 \\ 0 &{} 0 &{} \lambda _{1}+\lambda _{2}+\lambda _{4}-\lambda _{5} \end{array} \right) . \end{aligned}$$
(B.14)

In the same manner, for the multiplets \(\rho \) and \(\chi \), the expressions are

$$\begin{aligned} E_{00\left( \rho \chi \right) }&= \frac{\lambda _{1}+\lambda _{2}+\lambda _{4}+\lambda _{5}}{4}, \nonumber \\ E_{a\left( \rho \chi \right) }&= \frac{\lambda _{1}-\lambda _{2}-\lambda _{4}}{4}\delta _{a3}, \nonumber \\ E_{\left( \rho \chi \right) }&= \frac{1}{4}\left( \begin{array}{ccc} \lambda _{6} &{} 0 &{} 0 \\ 0 &{} \lambda _{6} &{} 0 \\ 0 &{} 0 &{} \lambda _{1}+\lambda _{2}+\lambda _{4}-\lambda _{5} \end{array} \right) . \end{aligned}$$
(B.15)

Similarly, for the \(\eta \) and \(\chi \) fields, we find

$$\begin{aligned} E_{00\left( \eta \chi \right) }=\lambda _{2},E_{a\left( \eta \chi \right) }=0,E_{\left( \eta \chi \right) }=\left( \begin{array}{ccc} \lambda _{4} &{} 0 &{} 0 \\ 0 &{} -\lambda _{3} &{} 0 \\ 0 &{} 0 &{} \lambda _{4} \end{array} \right) . \end{aligned}$$
(B.16)

Following Ref. [109], we determine the stability of the scalar potential from the conditions:

$$\begin{aligned} f_{\rho \eta }\left( u\right) >0,f_{\rho \chi }\left( u\right) >0,f_{\eta \chi }\left( u\right) >0. \end{aligned}$$
(B.17)

We use the theorem of stability of the scalar potential of Ref. [109] to determine the stability conditions of the scalar potential. To this end, the condition \(f_{\rho \eta }\left( u\right) >0\) is analyzed for the set of values of \(u\) which include the \(0\), (since \(f^{\prime }_{\rho \eta }\left( 0\right) >0\)) the roots \(u_{\rho \eta }^{\left( 1\right) }\) and \(u_{\rho \eta }^{\left( 2\right) }\) of the equation \(f^{\prime }_{\rho \eta }\left( u\right) =0\) and the eigenvalues \(\widetilde{E}_{\left( \rho \eta \right) }^{\left( a\right) }\) of the matrix \(E_{\left( \rho \eta \right) }\) where \(f_{\rho \eta }\left( \widetilde{E}_{\left( \rho \eta \right) }^{\left( a\right) }\right) \) is finite and \(f^{\prime }_{\rho \eta }\left( \widetilde{E}_{\left( \rho \eta \right) }^{\left( a\right) }\right) \ge 0\). We proceed in a similar way when analyzing the conditions \(f_{\rho \chi }\left( u\right) >0\) and \(f_{\eta \chi }\left( u\right) >0\).

Therefore, the scalar potential is stable when the following conditions are fulfilled:

$$\begin{aligned} \lambda _{1}&> 0,\lambda _{2}>0,\lambda _{6}>0, \lambda _{2}>\lambda _{3}, \nonumber \\ \lambda _{2}+\lambda _{4}&> 0,\lambda _{5}+\lambda _{6}>2\sqrt{ \lambda _{1}\left( \lambda _{2}+\lambda _{4}\right) }. \end{aligned}$$
(B.18)

From the minimization conditions of the scalar potential, the stability of the scalar potential and the Higgs masses we can find other restrictions for the quartic couplings of the scalar potentials. Having masses \( m_{H_{1}^{\pm }}^{2}\), \(m_{H_{1}^{0}}^{2}\), and \(m_{H_{1}^{0}}^{2}\) to be positively defined requires the following condition:

$$\begin{aligned} f>0. \end{aligned}$$
(B.19)

In the same manner, the conditions \(\lambda _{6}>0\) y \(\lambda _{2}+\lambda _{6}>0\) guarantee that \(m_{H_{3}^{0}}^{2}\) and \(m_{H_{2}^{\pm }}^{2}\) are positively defined, respectively. From the expressions corresponding to the masses of the fields \(h^{0}\), \(H_{2}^{0}\) y \(\bar{H}_{2}^{0}\), it is necessary to impose additional conditions that guarantee that they are positively defined, i.e.,

$$\begin{aligned} \lambda _{4}>0,\;\;\;\;\;\;\;\lambda _{1}(\lambda _{2}+\lambda _{4})>\lambda _{5}^{2}. \end{aligned}$$
(B.20)

Then we get

$$\begin{aligned} \lambda _{5}+\lambda _{6}>0. \end{aligned}$$
(B.21)

Finally the stability conditions of the low energy scalar potential can be summarized in the following form:

$$\begin{aligned} \lambda _{1}>0,&\lambda _{2}>0,\lambda _{4}>0, \lambda _{6}>0,f>0, \nonumber \\ \lambda _{2}>\lambda _{3},&\lambda _{2}+\lambda _{4}>0, \lambda _{5}+\lambda _{6}>0, \nonumber \\ \lambda _{1}(\lambda _{2}+\lambda _{4})>\lambda _{5}^{2},&\lambda _{5}+\lambda _{6}>2\sqrt{\lambda _{1}\left( \lambda _{2}+\lambda _{4}\right) }. \end{aligned}$$
(B.22)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP3 / License Version CC BY 4.0.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cárcamo Hernández, A.E., Martinez, R. & Nisperuza, J. \(S_3\) discrete group as a source of the quark mass and mixing pattern in \(331\) models. Eur. Phys. J. C 75, 72 (2015). https://doi.org/10.1140/epjc/s10052-015-3278-z

Download citation