Skip to main content
Log in

Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present ECHO-QGP, a numerical code for (3+1)-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high-energy nuclear collisions. The code has been built on top of the Eulerian Conservative High-Order astrophysical code for general relativistic magneto-hydrodynamics (Del Zanna et al. in Astron. Astrophys. 473:11, 2007] and here it has been upgraded to handle the physics of the Quark–Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects both in Minkowskian and in Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper–Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by the combination of the conservative (shock-capturing) approach and the high-order methods employed. ECHO-QGP can be extended to include evolution of the electromagnetic fields coupled to the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. J. Adams, et al. (STAR collaboration), Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  2. K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  3. B.B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  4. A. Arsence et al. (BRAHMS Collaboration), Nucl. Phys. A 757, 1 (2005)

    Article  ADS  Google Scholar 

  5. M. Krzewicki (ALICE Collaboration) QM-2011, arXiv:1107.0080v1 [nucl-ex]

  6. K. Aamodt et al. (The Alice Collaboration), arXiv:1011.3914 [nucl-ex]

  7. K. Aamodt et al. (The Alice Collaboration), Phys. Rev. Lett. 105, 252301 (2010)

    Article  ADS  Google Scholar 

  8. K. Aamodt et al. (The Alice Collaboration), Phys. Rev. Lett. 106, 032301 (2011)

    Article  ADS  Google Scholar 

  9. P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2009)

    Article  ADS  Google Scholar 

  10. T. Hirano, P. Huovinen, Y. Nara. arXiv:1012.3955 [nucl-th]

  11. X.-F. Chen, T. Hirano, E. Wang, X.-N. Wang, H. Zhang. arXiv:1102.5614 [nucl-th]

  12. H. Song, U.W. Heinz, Phys. Rev. C 81, 024905 (2010)

    Article  ADS  Google Scholar 

  13. C. Eckart, Phys. Rev. 58, 919 (1940)

    Article  ADS  Google Scholar 

  14. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Landau and Lifshitz), vol. 10 (Pergamon, New York, 1981)

    Google Scholar 

  15. W. Israel, Ann. Phys. (N. Y.) 100, 310 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  16. W. Israel, J.M. Stewart, Ann. Phys. (N. Y.) 118, 349 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  17. I. Müler, Z. Phys. 198, 329 (1967)

    Article  Google Scholar 

  18. I. Müller, Living Rev. Relativ. 2, 1 (1999)

    ADS  Google Scholar 

  19. A. Muronga, Phys. Rev. Lett. 88, 062302 (2002). Erratum. Phys. Rev. Lett. 89, 159901 (2002)

    Article  ADS  Google Scholar 

  20. A. Muronga, Phys. Rev. C 69, 034903 (2004)

    Article  ADS  Google Scholar 

  21. R. Baier, P. Romatschke, U.A. Wiedemann, Phys. Rev. C 73, 064903 (2006)

    Article  ADS  Google Scholar 

  22. R. Baier, P. Romatschke, Eur. Phys. J. C 51, 677 (2007)

    Article  ADS  Google Scholar 

  23. A. Dumitru, E. Molnar, Y. Nara, Phys. Rev. C 76, 024910 (2007)

    Article  ADS  Google Scholar 

  24. P. Huovinen, D. Molnar, Phys. Rev. C 79, 014906 (2009)

    Article  ADS  Google Scholar 

  25. A. Muronga, D.H. Rischke, arXiv:nucl-th/0407114

  26. A.K. Chaudhuri, arXiv:0704.0134 [nucl-th]

  27. A.K. Chaudhuri, arXiv:0801.3180 [nucl-th]

  28. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  ADS  Google Scholar 

  29. H. Song, U.W. Heinz, Phys. Lett. B 658, 279 (2008)

    Article  ADS  Google Scholar 

  30. H. Song, U.W. Heinz, Phys. Rev. C 77, 064901 (2008)

    Article  ADS  Google Scholar 

  31. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008). Erratum. Phys. Rev. C 79, 039903 (2009)

    Article  ADS  Google Scholar 

  32. H. Song, U.W. Heinz, Phys. Rev. C 78, 024902 (2008)

    Article  ADS  Google Scholar 

  33. B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011)

    Article  ADS  Google Scholar 

  34. P. Bozek, Phys. Rev. C 85, 034901 (2012)

    Article  ADS  Google Scholar 

  35. J. Vredevoogd, S. Pratt, Phys. Rev. C 85, 044908 (2012)

    Article  ADS  Google Scholar 

  36. L.P. Csernai, V.K. Magas, D.J. Wang, Phys. Rev. C 87, 034906 (2013)

    Article  ADS  Google Scholar 

  37. L.P. Csernai, V.K. Magas, H. Stocker, D.D. Strottman, Phys. Rev. C 84, 024914 (2011)

    Article  ADS  Google Scholar 

  38. L.P. Csernai, Y. Cheng, S. Horvat, V. Magas, D. Strottman, M. Zetenyi, J. Phys. G 36, 064032 (2009)

    Article  ADS  Google Scholar 

  39. V.K. Magas, L.P. Csernai, D. Strottman, Phys. Rev. C 64, 014901 (2001)

    Article  ADS  Google Scholar 

  40. P. Bozek, I. Wyskiel-Piekarska, Phys. Rev. C 85, 064915 (2012)

    Article  ADS  Google Scholar 

  41. P. Bozek, W. Broniowski, Phys. Lett. B 718, 1557 (2013)

    Article  ADS  Google Scholar 

  42. B. Schenke, S. Jeon, C. Gale, Phys. Lett. B 702, 59 (2011)

    Article  ADS  Google Scholar 

  43. B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 85, 024901 (2012)

    Article  ADS  Google Scholar 

  44. L. Del Zanna, O. Zanotti, N. Bucciantini, P. Londrillo, Astron. Astroph. 473, 11 (2007)

    Article  ADS  Google Scholar 

  45. N. Bucciantini, L. Del Zanna, Astron. Astroph. 528, A101 (2011)

    Article  ADS  Google Scholar 

  46. N. Bucciantini, L. Del Zanna, MNRAS 428, 71 (2013)

    Article  ADS  Google Scholar 

  47. D.E. Kharzeev et al., Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  48. D.E. Kharzeev, H.U. Lee, Phys. Rev. D 84, 045025 (2011)

    Article  ADS  Google Scholar 

  49. E. Molnàr, H. Niemi, D.H. Rischke, Euro. Phys. J. C 65, 615 (2010)

    Article  ADS  Google Scholar 

  50. A. Muronga, Phys. Rev. C 76, 014909 (2007)

    Article  ADS  Google Scholar 

  51. S. Bhattacharyya et al., JHEP 0806, 055 (2008)

    Article  ADS  Google Scholar 

  52. P. Romatschke, Class. Quant. Grav. 27, 025006 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  53. R. Baier et al., JHEP 0804, 100 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  54. J. Noronha-Hostler et al. arXiv:1305.1981 [nucl-th]

  55. B. Alver et al. (PHOBOS Collaboration), Int. J. Mod. Phys. E 16, 331 (2008)

    Google Scholar 

  56. P.F. Kolb et al., Nucl. Phys. A 696, 197 (2001)

    Article  ADS  Google Scholar 

  57. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994)

    Article  ADS  Google Scholar 

  58. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 3352 (1994)

    Article  ADS  Google Scholar 

  59. D. Khazeev, E. Levin, M. Nardi, Nucl. Phys. A 730, 448 (2004)

    Article  ADS  Google Scholar 

  60. H.J. Drescher, A. Dumitru, A. Hayashigaki, Y. Nara, Phys. Rev. C 74, 044905 (2006)

    Article  ADS  Google Scholar 

  61. I. Kanitscheider, K. Skenderis, JHEP 04, 062 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  62. M. Natsuume, T. Okamura, Phys. Rev. D 77, 066014 (2008). Erratum. Phys. Rev. D 78, 089902 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  63. S. Bhattacharyya, V.E. Hubeny, S. Minwalla, M. Rangamani, JHEP 0802, 045 (2008)

    Article  ADS  Google Scholar 

  64. M. Laine, Y. Schröder, Phys. Rev. D 73, 085009 (2006)

    Article  ADS  Google Scholar 

  65. S. Borsanyi et al., JHEP 1011, 077 (2010)

    Article  ADS  Google Scholar 

  66. M. Bluhm, P. Alba, W. Alberico, A. Beraudo, C. Ratti, (2013). arXiv:1306.6188 [hep-ph]

  67. W. Florkowski, Phenomenology of Ultra-relativistic Heavy-Ion Collisions (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  68. H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987)

    Article  ADS  Google Scholar 

  69. T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006)

    Article  ADS  Google Scholar 

  70. A. Adil, M. Gyulassy, Phys. Rev. C 72, 034907 (2005)

    Article  ADS  Google Scholar 

  71. H. Holopainen, H. Niemi, K.J. Eskola, Phys. Rev. C 83, 034901 (2011)

    Article  ADS  Google Scholar 

  72. L. Del Zanna, N. Bucciantini, Astron. Astrophys. 390, 1177 (2002)

    Article  ADS  MATH  Google Scholar 

  73. M. Takamoto, S. Inutsuka, Jour. Comp. Phys. 230, 7002 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. B.K. Patra, V. Agotiya, V. Chandra, Eur. Phys. J. C 67, 465 (2010)

    Article  ADS  Google Scholar 

  75. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, JHEP 0804, 100 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  76. G. Baym et al., Nucl. Phys. A 407, 541 (1983)

    Article  ADS  Google Scholar 

  77. S.S. Gubser, Phys. Rev. D 82, 085027 (2010). arXiv:1006.0006 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  78. F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)

    Article  ADS  Google Scholar 

  79. P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Rev. C 62, 054909 (2000). hep-ph/0006129

    Article  ADS  Google Scholar 

  80. J. Sollfrank, P. Koch, U.W. Heinz, Z. Phys. C 52, 593 (1991)

    Article  ADS  Google Scholar 

  81. S.A. Bass, A. Dumitru, Phys. Rev. C 61, 064909 (2000). nucl-th/0001033

    Article  ADS  Google Scholar 

  82. D. Teaney, J. Lauret, E.V. Shuryak. nucl-th/0110037

  83. T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006). nucl-th/0511046

    Article  ADS  Google Scholar 

  84. C. Nonaka, S.A. Bass, Phys. Rev. C 75, 014902 (2007). nucl-th/0607018

    Article  ADS  Google Scholar 

  85. H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, H. Stocker, Phys. Rev. C 78, 044901 (2008). arXiv:0806.1695

    Article  ADS  Google Scholar 

  86. K. Werner, I. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, Phys. Rev. C 82, 044904 (2010). arXiv:1004.0805

    Article  ADS  Google Scholar 

  87. H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011). arXiv:1011.2783

    Article  ADS  Google Scholar 

  88. I. Karpenko, Y. Sinyukov, K. Werner, Phys. Rev. C 87, 024914 (2013). arXiv:1204.5351

    Article  ADS  Google Scholar 

  89. T. Hirano, P. Huovinen, K. Murase, Y. Nara, Prog. Part. Nucl. Phys. 70, 108 (2013). arXiv:1204.5814

    Article  ADS  Google Scholar 

  90. B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 82, 014903 (2010). arXiv:1004.1408

    Article  ADS  Google Scholar 

  91. P. Huovinen, H. Petersen. arXiv:1206.3371 [nucl-th]

  92. P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Rev. C 62, 054909 (2000). hep-ph/0006129

    Article  ADS  Google Scholar 

  93. P.F. Kolb, R. Rapp, Phys. Rev. C 67, 044903 (2003). hep-ph/0210222

    Article  ADS  Google Scholar 

  94. P. Romatschke, Eur. Phys. J. C 52, 203 (2007)

    Article  ADS  Google Scholar 

  95. J. Vredevoogd, S. Pratt, Phys. Rev. C 85, 044908 (2012). arXiv:1202.1509

    Article  ADS  Google Scholar 

  96. P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Lett. B 459, 667 (1999)

    Article  ADS  Google Scholar 

  97. P. Bozek, Phys. Rev. C 85, 014911 (2012)

    Article  ADS  Google Scholar 

  98. ATLAS Collaboration, Phys. Rev. Lett. 110, 182302 (2013)

    Article  ADS  Google Scholar 

  99. CMS collaboration, Phys. Lett. B 718, 795 (2013)

    Article  ADS  Google Scholar 

  100. U. Heinz. hep-ph/0407360

  101. T. Hirano, Phys. Rev. C 65, 011901 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Italian Ministry of Education and Research grant PRIN 2009 Il Quark–Gluon Plasma e le collisioni nucleari di alta energia and by the INFN project RM31. F.B. acknowledges the support of HIC for FAIR during his sabbatical leave in Frankfurt. We are thankful to J. Rizzo, P. Cea, and L. Cosmai for help in the initial stage of this project, and to R. Tripiccione for many interesting informative discussions about the freeze-out procedure. G.P. acknowledges financial support from the Italian Ministry of Research through the program Rita Levi Montalcini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Del Zanna.

Appendices

Appendix A: Fluid description in Minkowski and Bjorken coordinates

In this appendix we summarize the essential formulas establishing the link between the fluid description in Minkowski and Bjorken coordinates. While what contained in the text is already sufficiently self-consistent, here we wish to establish a mapping with the notation adopted by other authors [100, 101] and widely employed in phenomenological studies, such as blast-wave fits. For the sake of clarity in this appendix four-vectors in Bjorken coordinates will be denoted by a “prime” and components of the three-velocity by a “tilde”; in the text such a distinction will be neglected.

1.1 A.1 Minkowski coordinates

Here we specify the notation employed for the different rapidities entering into our RHD setup.

  • Fluid rapidity:

    $$ Y\equiv\frac{1}{2}\ln\frac{1+v^z}{1-v^z}\longrightarrow v^z=\tanh Y $$
    (A.1)

    with v z the longitudinal component of the fluid velocity v;

  • Space-time rapidity:

    $$ \eta_s\equiv\frac{1}{2}\ln\frac{t+z}{t-z}. $$
    (A.2)
  • Particle rapidity (of the emitted hadron):

    $$ y\equiv\frac{1}{2}\ln\frac{E+p_z}{E-p_z}; $$
    (A.3)

The particle four-momentum is conveniently expressed in terms of its transverse mass m and rapidity:

$$ p^\mu\equiv(m_\perp\cosh y,{\boldsymbol{p}}_\perp,m_\perp \sinh y) $$
(A.4)

The fluid four-velocity, defined as

$$ u^\mu\equiv\gamma\,(1,{\boldsymbol{v}})=\gamma\,(1,{\boldsymbol {v}}_\perp,v_z) ,\quad{\rm with}\ \gamma\equiv1/ \sqrt{1-{\boldsymbol{v}}^2}, $$
(A.5)

can be recasted in terms of the fluid-rapidity as

$$ u^\mu=\frac{1}{\sqrt{1-\cosh^2Y\,{\boldsymbol{v}}_\perp^2}}(\cosh Y,\cosh Y\,{\boldsymbol{v}} _\perp,\sinh Y). $$
(A.6)

This suggest to define the “transverse velocity”

$$ {\boldsymbol{u}}_\perp\equiv\cosh Y\,{\boldsymbol{v}}_\perp, $$
(A.7)

so that

$$ u^\mu\equiv\gamma_\perp\,(\cosh Y,{\boldsymbol{u}}_\perp, \sinh Y) ,\quad{\rm with}\ \gamma_\perp\equiv1/\sqrt{1-{ \boldsymbol{u}}_\perp^2}. $$
(A.8)

The scalar product between the particle momentum and the fluid velocity, entering into the Cooper–Frye decoupling prescription, reads (with metric [−,+,+,+])

$$ -p\cdot u=\gamma_\perp\bigl[m_\perp\cosh(y-Y)-{ \boldsymbol{p}}_\perp \cdot{\boldsymbol{u}}_\perp \bigr], $$
(A.9)

expressing the fact that particles tend to be emitted with rapidity close to the one of the fluid-cell.

In the general case the velocity field of the fluid depends on all the four space-time coordinates: one has u u (τ,r ,η s ) and YY(τ,r ,η s ).

In the case of longitudinal boost-invariance of the fluid profile one has always

$$ v_z=\frac{z}{t}\longrightarrow Y\equiv \eta_s, $$
(A.10)

so that the fluid velocity reduces to

$$ u^\mu=\gamma_\perp\,(\cosh\eta_s,{ \boldsymbol{u}}_\perp,\sinh \eta_s), $$
(A.11)

which only depends on u (τ,r ).

1.2 A.2 Bjorken coordinates

One can go from the Minkowski coordinates

$$ u^\mu\equiv\bigl(u^0,u^1,u^2,u^3 \bigr) $$
(A.12)

to the Bjorken (sometimes also known as Milne) coordinates

$$ u'^m\equiv\bigl[u'^\tau,u'^x,u'^y,u'^\eta \bigr] $$
(A.13)

through the transformation

$$ u'^m\equiv\frac{\partial x'^m}{\partial x^\nu}u^\nu. $$
(A.14)

One has

$$\begin{aligned} &u'^\tau=\frac{d\tau}{dt}u^0+ \frac{d\tau}{dz}u^3=\gamma_\perp \cosh(Y- \eta_s) \end{aligned}$$
(A.15a)
$$\begin{aligned} &u'^\eta=\frac{d\eta_s}{dt}u^0+ \frac{d\eta_s}{dz}u^3=\gamma_\perp \frac{1}{\tau} \sinh(Y-\eta_s). \end{aligned}$$
(A.15b)

Hence

$$ u'^m=\gamma_\perp \biggl[\cosh(Y- \eta_s),{\boldsymbol{u}}_\perp ,\frac{1}{\tau }\sinh(Y- \eta_s) \biggr] $$
(A.16)

The four-momentum in Milne coordinates analogously reads

$$ p'^m= \biggl[m_\perp\cosh(y- \eta_s),{\boldsymbol{p}}_\perp,\frac {1}{\tau }m_\perp \sinh(y-\eta_s) \biggr]. $$
(A.17)

Its contraction with um and the hypersurface element in Eqs. (A.16) and (66) allows one to recover the freeze-out formula employed in the text in Eq. (65) and expressed in terms of the output variables of ECHO-QGP. Notice that its contraction with the expression of the fluid four-velocity in Eq. (A.16) provides the result in Eq. (A.9).

After a further change of variables, introducing the definitions

$$ \widetilde{v}^\eta\equiv\frac{\tanh(Y-\eta_s)}{\tau}\quad{\rm and}\quad \widetilde{v}^{x/y}\equiv\frac{u_\perp^{x/y}}{\cosh (Y-\eta_s)}, $$
(A.18)

one has

$$ u'^m=\widetilde{\gamma} \bigl[1,\widetilde{v}^x, \widetilde {v}^y,\widetilde{v}^\eta \bigr], $$
(A.19)

where

$$ \widetilde{\gamma}\equiv\gamma_\perp\,\cosh(Y-\eta_s)= \frac {1}{\sqrt{1-(\widetilde{v}^x)^2-(\widetilde{v}^y)^2-\tau ^2(\widetilde{v}^\eta)^2 }} $$
(A.20)

in agreement with the definition \(\widetilde{\gamma} \equiv (1-g_{ij}\tilde{v}^{i}\tilde{v}^{j})^{-1/2}\) quoted in the text.

In the case of a longitudinal boost-invariant expansion one has Yη s , so that

$$ u'^m=\gamma_\perp[1,{\boldsymbol{u}}_\perp,0]. $$
(A.21)

Appendix B: Source terms

In the present appendix, we write down explicitly the source terms needed for the evolution of the set of balance laws as in Eq. (26). For the momentum and energy equations we have, respectively

$$\begin{aligned} \mathbf{S}(S_i) & = |g|^{1/2} \biggl[ \frac{1}{2} T^{\mu\nu} \partial_i g_{\mu\nu} \biggr], \end{aligned}$$
(B.22)
$$\begin{aligned} \mathbf{S}(E) & = |g|^{1/2} \biggl[ - \frac{1}{2} T^{\mu\nu} \partial_0 g_{\mu\nu} \biggr], \end{aligned}$$
(B.23)

whereas for the evolution of the bulk viscous pressure Π and for the spatial components of the viscous stress tensor π ij more terms are required. We recall here the general definitions for the expansion scalar, shear tensor, and vorticity, which are

$$\begin{aligned} &\theta = d_\mu u^\mu= \partial_\mu u^\mu+ \varGamma^\mu_{\mu\nu }u^\nu, \end{aligned}$$
(B.24)
$$\begin{aligned} & \begin{aligned}[b] \sigma^{\mu\nu} & = \frac{1}{2}\bigl(d^\mu u^\nu+ d^\nu u^\mu\bigr) + \frac{1}{2} \bigl(u^\mu Du^\nu+ u^\nu Du^\mu\bigr) \\ &\quad - \frac{1}{3}\bigl(g^{\mu\nu} + u^\mu u^\nu \bigr)\theta, \end{aligned} \end{aligned}$$
(B.25)
$$\begin{aligned} &\omega^{\mu\nu} = \frac{1}{2}\bigl(d^\mu u^\nu- d^\nu u^\mu\bigr) + \frac{1}{2} \bigl(u^\mu Du^\nu- u^\nu Du^\mu \bigr), \end{aligned}$$
(B.26)

with

$$\begin{aligned} &d^\mu u^\nu = g^{\mu\alpha} \bigl( \partial_\alpha u^\nu+ \varGamma^\nu _{\alpha\beta} u^\beta\bigr), \end{aligned}$$
(B.27)
$$\begin{aligned} &Du^\nu = u^\alpha\bigl(\partial_\alpha u^\nu+ \varGamma^\nu_{\alpha \beta} u^\beta \bigr). \end{aligned}$$
(B.28)

Moreover, the \(\mathcal{I}^{\mu\nu}\) terms are provided by

$$\begin{aligned} \mathcal{I}^{\mu\nu}_0 & = - u^\alpha \bigl( \varGamma^\mu_{\alpha\beta}\pi^{\nu\beta} + \varGamma^\nu_{\alpha \beta} \pi^{\mu\beta}\bigr), \end{aligned}$$
(B.29)
$$\begin{aligned} \mathcal{I}^{\mu\nu}_1 & = g_{\alpha\beta}\bigl( \pi^{\mu\alpha}u^\nu + \pi^{\nu\alpha}u^\mu\bigr) Du^\beta, \end{aligned}$$
(B.30)
$$\begin{aligned} \mathcal{I}^{\mu\nu}_2 & = - \lambda\ g_{\alpha\beta}\bigl( \pi^{\mu \alpha}\omega^{\nu\beta} + \pi^{\nu\alpha}\omega^{\mu\beta} \bigr). \end{aligned}$$
(B.31)

In the remainder we shall specify to either Minkowski or Bjorken coordinates.

2.1 B.3 Minkowski coordinates

The simplest case is that of Minkowskian Cartesian coordinates (t,x,y,z), with metric g μν =g μν=diag(−1,1,1,1) (|g|1/2=1), and vanishing Christoffel symbols. Thus, no source terms are needed for the evolution of the energy-momentum tensor. Covariant derivatives simply become

$$\begin{aligned} d^t u^\nu& = - \partial_t u^\nu, \end{aligned}$$
(B.32)
$$\begin{aligned} d^i u^\nu& = \partial_i u^\nu, \end{aligned}$$
(B.33)
$$\begin{aligned} D u^\nu& = u^t \partial_t u^\nu+ u^i \partial_i u^\nu, \end{aligned}$$
(B.34)

so for instance the expansion scalar is

$$ \theta= \partial_t u^t + \partial_i u^i, $$
(B.35)

with i=x,y,z. Notice that \(\mathcal{I}_{0}^{\mu\nu}\equiv0\), while for \(\mathcal{I}_{1}^{\mu\nu}\) and \(\mathcal{I}_{2}^{\mu\nu}\) the standard definitions apply.

2.2 B.4 Bjorken coordinates

Bjorken coordinates (τ,x,y,η s ) have still a diagonal metric g μν =diag(−1,1,1,τ 2), and g μν=diag(−1,1,1,1/τ 2) (|g|1/2=τ), but here τ g ηη =2τ≠0 leading to the non-vanishing Christoffel symbols \(\varGamma^{\tau}_{\eta\eta}=\tau\) and \(\varGamma^{\eta}_{\eta\tau}=1/\tau\). Then, while the source term for the momentum equation is still zero, that for the energy equation becomes

$$ \mathbf{S}(E) = -\tau^2 T^{\eta\eta}. $$
(B.36)

Non-Minkowskian covariant derivatives are

$$\begin{aligned} &d^\tau u^\eta = - \bigl(\partial_\tau u^\eta+ u^\eta/\tau\bigr), \end{aligned}$$
(B.37)
$$\begin{aligned} &d^\eta u^\tau = \bigl(\partial_\eta u^\tau+ \tau u^\eta\bigr)/\tau^2, \end{aligned}$$
(B.38)
$$\begin{aligned} &d^\eta u^\eta = \bigl(\partial_\eta u^\eta+ u^\tau/\tau\bigr)/\tau^2, \end{aligned}$$
(B.39)
$$\begin{aligned} &D u^\tau = u^\tau\partial_\tau u^\tau+ u^i\partial_i u^\tau+ \tau u^\eta u^\eta, \end{aligned}$$
(B.40)
$$\begin{aligned} &D u^\eta = u^\tau\partial_\tau u^\eta+ u^i\partial_i u^\eta+ 2u^\tau u^\eta/\tau, \end{aligned}$$
(B.41)

with i=x,y,η, and the expansion scalar is now

$$ \theta= \partial_\tau u^\tau+ \partial_i u^i + u^\tau/\tau. $$
(B.42)

In Bjorken coordinates the non-vanishing \(\mathcal{I}_{0}^{\mu\nu }\equiv0\) terms are

$$\begin{aligned} \mathcal{I}_0^{x\eta} & = -\bigl(u^\tau \pi^{x\eta} + u^\eta\pi^{\tau x}\bigr)/\tau, \end{aligned}$$
(B.43)
$$\begin{aligned} \mathcal{I}_0^{y\eta} & = -\bigl(u^\tau \pi^{y\eta} + u^\eta\pi^{\tau y}\bigr)/\tau, \end{aligned}$$
(B.44)
$$\begin{aligned} \mathcal{I}_0^{\eta\eta} & = -2\bigl(u^\tau \pi^{\eta\eta} + u^\eta \pi^{\tau\eta}\bigr)/\tau, \end{aligned}$$
(B.45)

while \(\mathcal{I}_{1}^{\mu\nu}\) and \(\mathcal{I}_{2}^{\mu\nu}\) are defined in the usual way.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Zanna, L., Chandra, V., Inghirami, G. et al. Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP. Eur. Phys. J. C 73, 2524 (2013). https://doi.org/10.1140/epjc/s10052-013-2524-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2524-5

Keywords

Navigation