Skip to main content
Log in

Relative locality in a quantum spacetime and the pregeometry of κ-Minkowski

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We develop a description of the much-studied κ-Minkowski noncommutative spacetime, centered on representing on a single Hilbert space not only the κ-Minkowski coordinates, but also the κ-Poincaré symmetry generators and some suitable relativistic-transformation parameters. In this representation the relevant operators act on the kinematical Hilbert space of the covariant formulation of quantum mechanics, which we argue is the natural framework for studying the implications of the step from commuting spacetime coordinates to the κ-Minkowski case, where the spatial coordinates do not commute with the time coordinate. Within this kinematical-Hilbert-space representation we can give a crisp characterization of the “fuzziness” of points in κ-Minkowski spacetime, also allowing us to describe how the same fuzzy point is seen by different relativistic observers. The most striking finding of our analysis is a relativity of spacetime locality in κ-Minkowski. While previous descriptions of relative locality had been formulated exclusively in classical-spacetime setups, our analysis shows how relative locality in a quantum spacetime takes the shape of a dependence of the fuzziness of a spacetime point on the distance at which an observer infers properties of the event that marks the point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that in this pregeometric setup of [22] the “pregeometric Planck constant” ħ 0 is in general unrelated to the physical Planck constant ħ.

  2. Note that \(\hat{x}_{0}^{*}\) is a good choice of κ-Minkowski time coordinate, since \([\hat{x}_{1},\hat{x}_{0}^{*}] = i \ell\hat{x}_{1}\). And one also easily verifies that κ-Minkowski described by \(\hat{x}_{1},\hat{x}_{0}^{*}\) has good properties under boosts, \([B \triangleright\hat{x}_{1}, B \triangleright\hat {x}_{0}^{*}] = i \ell B \triangleright\hat{x}_{1}\) (or \(N\triangleright[\hat{x}_{1},\hat{x}_{0}^{*}] = i\ell N \triangleright \hat{x}_{1} \)), and under translations, \([T \triangleright\hat{x}_{1}, T \triangleright\hat {x}_{0}^{*}] = i \ell T \triangleright\hat{x}_{1}\) (or \(P_{\mu}\triangleright[\hat{x}_{1},\hat{x}_{0}^{*}] = i\ell P_{\mu}\triangleright\hat{x}_{1} \)).

  3. We shall pay little attention to the fact that actually there is an exception to this “fuzziness theorem”: the interested reader can easily verify that the origin of the observer, x 0=x 1=0, can be sharp. This can be straightforwardly added as a limiting case for the discussion we offer in the following, and in particular one finds that even a point that is absolutely sharp in the origin of one observer is described by a distant observer as a fuzzy point.

  4. Of course the same results for mean values and uncertainties of κ-Minkowski coordinates can be obtained by acting with T on the pregeometric state and evaluating \(\hat{x}_{\mu}\) and \(\delta\hat{x}_{\mu}\) in the state thereby obtained. The equivalent alternative we follow, by acting with T on \(\hat{x}_{\mu}\) and evaluating the mean value and the uncertainty of \(T\triangleright\hat{x}_{\mu}\) in the original state just allows the derivation to proceed a bit more speedy.

References

  1. S. Majid, H. Ruegg, Phys. Lett. B 334, 348 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J. Lukierski, H. Ruegg, W.J. Zakrzewski, Ann. Phys. 243, 90 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. Lukierski, H. Ruegg, A. Nowicki, V.N. Tolstoi, Phys. Lett. B 264, 331 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  4. G. Amelino-Camelia, S. Majid, Int. J. Mod. Phys. A 15, 4301 (2000). hep-th/9907110

    MathSciNet  ADS  MATH  Google Scholar 

  5. G. Amelino-Camelia, M. Matassa, F. Mercati, G. Rosati, Phys. Rev. Lett. 106, 071301 (2011). 1006.2126

    Article  ADS  Google Scholar 

  6. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 84, 084010 (2011). 1101.0931

    Article  ADS  Google Scholar 

  7. G. Amelino-Camelia, G. Gubitosi, A. Marciano, P. Martinetti, F. Mercati, Phys. Lett. B 671, 298 (2009). 0707.1863

    Article  MathSciNet  ADS  Google Scholar 

  8. L. Freidel, J. Kowalski-Glikman, S. Nowak, Int. J. Mod. Phys. A 23, 2687 (2008). 0706.3658

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. S.L. Woronowicz, Commun. Math. Phys. 122, 125 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Sitarz, Phys. Lett. B 349, 42 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Majid, J. Geom. Phys. 25, 119 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. Oeckl, J. Math. Phys. 40, 3588 (1999). math/9807097

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Majid, R. Oeckl, Commun. Math. Phys. 205, 617 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S. Meljanac, S. Kresic-Juric, Int. J. Mod. Phys. A 26, 3385 (2011). 1004.4647

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A. Agostini, G. Amelino-Camelia, M. Arzano, A. Marcianò, R.A. Tacchi, Mod. Phys. Lett. A 22, 1779 (2007). hep-th/0607221

    Article  ADS  MATH  Google Scholar 

  16. S. Zakrzewski, J. Phys. A, Math. Gen. 27, 2075 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Lukierski, H. Ruegg, Phys. Lett. B 329, 189 (1994). hep-th/9310117

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Kosiński, P. Maślanka. hep-th/9411033

  19. P. Kosiński, J. Lukierski, P. Maślanka, Phys. Rev. D 62, 025004 (2000). hep-th/9902037

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Ballesteros, N.R. Bruno, F.J. Herranz, Phys. Lett. B 574, 276 (2003). hep-th/0306089

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A. Ballesteros, N.R. Bruno, F.J. Herranz. hep-th/0409295

  22. S. Majid, Class. Quantum Gravity 5, 1587 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. E.R. Livine, D. Oriti, J. High Energy Phys. 0406, 050 (2004). gr-qc/0405085

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Agostini, J. Math. Phys. 48, 052305 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Dabrowski, G. Piacitelli. 1004.5091

  26. F. D’andrea, J. Math. Phys. 47, 062105 (2006). hep-th/0503012

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Ghosh, P. Pal, Phys. Rev. D 75, 105021 (2007). hep-th/0702159

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Mignemi, Phys. Rev. D 84, 025021 (2011). 1104.0490

    Article  ADS  Google Scholar 

  29. D. Kovacevic, S. Meljanac, J. Phys. A 45, 135208 (2012). 1110.0944 [math-ph]

    Article  MathSciNet  ADS  Google Scholar 

  30. J.J. Halliwell, Phys. Rev. D 64, 04408 (2001). gr-qc/0008046

    MathSciNet  Google Scholar 

  31. R. Gambini, R.A. Porto, Phys. Rev. D 63, 105014 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Gambini, R.A. Porto, Phys. Lett. A 294, 129 (2002)

    Article  ADS  MATH  Google Scholar 

  33. M. Reisenberger, C. Rovelli, Phys. Rev. D 65, 125016 (2002). gr-qc/0111016

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002). gr-qc/0012051.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J. Kowalski-Glikman, S. Nowak, Int. J. Mod. Phys. D 12, 299 (2003). hep-th/0204245

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003). gr-qc/0207085

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Amelino-Camelia, Symmetry 2, 230 (2010). 1003.3942

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge conversations with Daniele Oriti and Carlo Rovelli. The work of two of us (GAC and VA) was supported in part by a grant from the John Templeton Foundation. The work of one of us (GR) was supported in part by funds provided by the National Science Center under the agreement DEC-2011/02/A/ST2/00294. One of us (VA) acknowledges the hospitality of the Perimeter Institute for Theoretical Physics during parts of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Rosati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amelino-Camelia, G., Astuti, V. & Rosati, G. Relative locality in a quantum spacetime and the pregeometry of κ-Minkowski. Eur. Phys. J. C 73, 2521 (2013). https://doi.org/10.1140/epjc/s10052-013-2521-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2521-8

Keywords

Navigation