Skip to main content
Log in

Parametrisation-free determination of the shape parameters for the pion electromagnetic form factor

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Recent data from high-statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t=0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi–Watson theorem and the analysis of the ππ scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65 GeV, we obtain, with no specific parametrisation, the prediction \(\langle r_{\pi}^{2} \rangle\in(0.42,\,0.44)\ \text{fm}^{2}\) for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t=0, with a strong correlation among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The number of experimental points below the ωπ threshold reported by the BaBar experiment [6] is 221, while KLOE [7, 8] measured the modulus at 121 energies below t in, CMD-2 [9, 10] at 34 and Belle [11] at 15 energies.

  2. For simplicity, we assumed that the errors of the parameters are not correlated.

References

  1. S.R. Amendolia et al. (NA7 Collaboration), Nucl. Phys. B 277, 168 (1986)

    Article  ADS  Google Scholar 

  2. C.N. Brown, C.R. Canizares, W.E. Cooper, A.M. Eisner, G.J. Feldmann, C.A. Lichtenstein, L. Litt, W. Loceretz, V.B. Montana, F.M. Pipkin, Phys. Rev. D 8, 92 (1973)

    Article  ADS  Google Scholar 

  3. C.J. Bebek et al., Phys. Rev. D 17, 1693 (1978)

    Article  ADS  Google Scholar 

  4. T. Horn et al. (Jefferson Lab F(pi)-2 Collaboration), Phys. Rev. Lett. 97, 192001 (2006). nucl-ex/0607005

    Article  ADS  Google Scholar 

  5. G.M. Huber et al. (Jefferson Lab Collaboration), Phys. Rev. C 78, 045203 (2008). 0809.3052 [nucl-ex]

    Article  ADS  Google Scholar 

  6. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 231801 (2009). 0908.3589 [hep-ex]

    Article  ADS  Google Scholar 

  7. F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 670, 285 (2009). 0809.3950 [hep-ex]

    Article  ADS  Google Scholar 

  8. F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 700, 102 (2011). 1006.5313 [hep-ex]

    Article  ADS  Google Scholar 

  9. R.R. Akhmetshin et al. (CMD-2 Collaboration), JETP Lett. 84, 413 (2006) [Pis’ma Zh. Eksp. Teor. Fiz., 84, 491 (2006)]. hep-ex/0610016

    Article  ADS  Google Scholar 

  10. R.R. Akhmetshin et al. (CMD-2 Collaboration), Phys. Lett. B 648, 28 (2007). hep-ex/0610021

    Article  ADS  Google Scholar 

  11. M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78, 072006 (2008). 0805.3773 [hep-ex]

    Article  ADS  Google Scholar 

  12. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001). hep-ph/0005297

    Article  ADS  MATH  Google Scholar 

  13. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001). hep-ph/0103088

    Article  ADS  Google Scholar 

  14. I. Caprini, G. Colangelo, H. Leutwyler, Eur. Phys. J. C 72, 1860 (2012). 1111.7160 [hep-ph]

    Article  ADS  Google Scholar 

  15. R. Kaminski, J.R. Pelaez, F.J. Yndurain, Phys. Rev. D 77, 054015 (2008). 0710.1150 [hep-ph]

    Article  ADS  Google Scholar 

  16. R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, F.J. Yndurain, Phys. Rev. D 83, 074004 (2011). 1102.2183 [hep-ph]

    Article  ADS  Google Scholar 

  17. S. Ciulli, C. Pomponiu, I. Sabba-Stefanescu, Phys. Rep. 17, 133 (1975)

    Article  ADS  Google Scholar 

  18. G. Abbas, B. Ananthanarayan, I. Caprini, I.S. Imsong, S. Ramanan, Eur. Phys. J. A 45, 389 (2010). 1004.4257 [hep-ph]

    Article  ADS  Google Scholar 

  19. I. Caprini, Eur. Phys. J. C 13, 471 (2000). hep-ph/9907227

    Article  ADS  Google Scholar 

  20. B. Ananthanarayan, I. Caprini, I.S. Imsong, Phys. Rev. D 83, 096002 (2011). 1102.3299 [hep-ph]

    Article  ADS  Google Scholar 

  21. B. Ananthanarayan, I. Caprini, I.S. Imsong, Phys. Rev. D 85, 096006 (2012). 1203.5398 [hep-ph]

    Article  ADS  Google Scholar 

  22. B. Ananthanarayan, I. Caprini, D. Das, I.S. Imsong, Eur. Phys. J. C 72, 2192 (2012). 1209.0379 [hep-ph]

    Article  ADS  Google Scholar 

  23. G. Colangelo, M. Finkemeier, R. Urech, Phys. Rev. D 54, 4403 (1996). hep-ph/9604279

    Article  ADS  Google Scholar 

  24. J. Bijnens, G. Colangelo, P. Talavera, J. High Energy Phys. 9805, 014 (1998). hep-ph/9805389

    ADS  Google Scholar 

  25. J. Bijnens, P. Talavera, J. High Energy Phys. 0203, 046 (2002). hep-ph/0203049

    Article  ADS  Google Scholar 

  26. P. Maris, P.C. Tandy, Phys. Rev. C 61, 045202 (2000). nucl-th/9910033

    Article  ADS  Google Scholar 

  27. S. Aoki et al. (JLQCD Collaboration TWQCD Collaboration), Phys. Rev. D 80, 034508 (2009). 0905.2465 [hep-lat]

    Article  ADS  Google Scholar 

  28. J.F. de Troconiz, F.J. Yndurain, Phys. Rev. D 71, 073008 (2005). hep-ph/0402285

    Article  ADS  Google Scholar 

  29. P. Masjuan, S. Peris, J.J. Sanz-Cillero, Phys. Rev. D 78, 074028 (2008). 0807.4893 [hep-ph]

    Article  ADS  Google Scholar 

  30. T.N. Truong. hep-ph/9809476

  31. R. Barate et al. (ALEPH Collaboration), Z. Phys. C 76, 15 (1997)

    Article  Google Scholar 

  32. G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244 (1968)

    Article  ADS  Google Scholar 

  33. N.N. Meiman, Sov. Phys. JETP 17, 830 (1963)

    MathSciNet  MATH  Google Scholar 

  34. P. Duren, Theory of H p Spaces (Academic Press, New York, 1970)

    MATH  Google Scholar 

  35. S. Anderson et al. (CLEO Collaboration), Phys. Rev. D 61, 112002 (2000). hep-ex/9910046

    Article  ADS  Google Scholar 

  36. H. Leutwyler. hep-ph/0212324

  37. C. Hanhart, Phys. Lett. B 715, 170 (2012). 1203.6839 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

IC acknowledges support from the Program Nucleu under Contract PN 09370102/2009, and from Program Idei-PCE, Contract No 121/2011. ISS acknowledges the support from Deutsche Forschungsgemeinschaft Research Unit FOR 1873 “Quark Flavour Physics and Effective Theories”, Contract No. KH 205/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ananthanarayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananthanarayan, B., Caprini, I., Das, D. et al. Parametrisation-free determination of the shape parameters for the pion electromagnetic form factor. Eur. Phys. J. C 73, 2520 (2013). https://doi.org/10.1140/epjc/s10052-013-2520-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2520-9

Keywords

Navigation