Skip to main content
Log in

Associated production evidence against Higgs impostors and anomalous couplings

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

There is still no proof that the new particle X recently discovered by the ATLAS and CMS Collaborations indeed has spin zero and positive parity, as confidently expected. We show here that the energy dependence of associated W/Z+X production would be much less for a J P=0+ boson with minimal couplings, such as the Higgs boson of the Standard Model, than for a spin-two particle with graviton-like couplings or a spin-zero boson with non-minimal couplings. The \(W/Z + (X \to{\bar{b}}b)\) signal apparently observed by the CDF and D0 Collaborations can be used to predict the cross section for the same signal at the LHC that should be measured under the spin-two and different spin-zero hypotheses. The spin-two prediction exceeds by an order of magnitude the upper limits established by the ATLAS and CMS Collaborations, which are consistent with the minimal 0+ prediction, thereby providing secunda facie evidence against spin-two Higgs impostors. Similar analyses of energy dependences provide evidence against 0 impostors, non-minimal scalar boson couplings, including the best LHC limits on dimension-six operators. Comparing the LHC vector boson fusion cross sections at 7 and 8 TeV in the centre of mass provides additional but weaker evidence in favour of the identification of the X particle as a J P=0+ boson with minimal couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The energy dependence is dominated by the \(F_{\mu\rho} F^{\rho}_{\nu}\) term in the stress-tensor, with the contribution of the term \(\propto m_{V}^{2} V_{\mu} V_{\nu}\) being suppressed at high energies.

  2. The analogous observation for associated X production in e + e collisions was made in [54].

  3. The more up-to-date HCP2012 results from CMS were not reported separately for 7 and 8 TeV.

  4. We recall that, as discussed earlier, we are being conservative in basing this discussion on the energy dependence of the 2-lepton signal, since the 1-lepton signal rises more rapidly, as seen in Fig. 1.

  5. In the absence of unitarisation, the spin-2 case can also be excluded on the basis of the p T distribution [4147].

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). See also https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults. arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). See also http://cms.web.cern.ch/org/cms-papers-and-results. arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  3. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  4. P.W. Higgs, Phys. Rev. 145, 1156 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Ellis, D.S. Hwang, J. High Energy Phys. 1209, 071 (2012). arXiv:1202.6660 [hep-ph]

    Article  ADS  Google Scholar 

  6. A. Alves, arXiv:1209.1037 [hep-ph]

  7. J. Ellis, R. Fok, D.S. Hwang, V. Sanz, T. You, arXiv:1210.5229 [hep-ph]

  8. Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, N.V. Tran, Phys. Rev. D 81, 075022 (2010). Appendix A. arXiv:1001.3396 [hep-ph]

    Article  ADS  Google Scholar 

  9. M.C. Kumar, P. Mathews, A.A. Pankov, N. Paver, V. Ravindran, A.V. Tsytrinov, Phys. Rev. D 84, 115008 (2011). Two lines after Eq. (A2), and Eq. (9). arXiv:1108.3764 [hep-ph]

    Article  ADS  Google Scholar 

  10. S.Y. Choi, D.J. Miller, M.M. Muhlleitner, P.M. Zerwas, Phys. Lett. B 553, 61 (2003). arXiv:hep-ph/0210077

    Article  ADS  Google Scholar 

  11. K. Odagiri, J. High Energy Phys. 0303, 009 (2003). arXiv:hep-ph/0212215

    Article  ADS  Google Scholar 

  12. C.P. Buszello, I. Fleck, P. Marquard, J.J. van der Bij, Eur. Phys. J. C 32, 209 (2004). arXiv:hep-ph/0212396

    Article  ADS  Google Scholar 

  13. A. Djouadi, Phys. Rep. 457, 1 (2008). arXiv:hep-ph/0503172

    Article  ADS  Google Scholar 

  14. C.P. Buszello, P. Marquard, arXiv:hep-ph/0603209

  15. A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Phys. Rev. D 74, 013004 (2006). arXiv:hep-ph/0604011

    Article  ADS  Google Scholar 

  16. P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner, S.D. Rindani, Phys. Rev. Lett. 100, 051801 (2008). arXiv:0707.2878 [hep-ph]

    Article  ADS  Google Scholar 

  17. R.M. Godbole, D.J. Miller, M.M. Muhlleitner, J. High Energy Phys. 0712, 031 (2007). arXiv:0708.0458 [hep-ph]

    Article  ADS  Google Scholar 

  18. K. Hagiwara, Q. Li, K. Mawatari, J. High Energy Phys. 0907, 101 (2009). arXiv:0905.4314 [hep-ph]

    Article  ADS  Google Scholar 

  19. A. De Rujula, J. Lykken, M. Pierini, C. Rogan, M. Spiropulu, Phys. Rev. D 82, 013003 (2010). arXiv:1001.5300 [hep-ph]

    Article  ADS  Google Scholar 

  20. C. Englert, C. Hackstein, M. Spannowsky, Phys. Rev. D 82, 114024 (2010). arXiv:1010.0676 [hep-ph]

    Article  ADS  Google Scholar 

  21. U. De Sanctis, M. Fabbrichesi, A. Tonero, Phys. Rev. D 84, 015013 (2011). arXiv:1103.1973 [hep-ph]

    Article  ADS  Google Scholar 

  22. V. Barger, P. Huang, Phys. Rev. D 84, 093001 (2011). arXiv:1107.4131 [hep-ph]

    Article  ADS  Google Scholar 

  23. S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, N.V. Tran, A. Whitbeck, arXiv:1208.4018 [hep-ph]

  24. R. Boughezal, T.J. LeCompte, F. Petriello, arXiv:1208.4311 [hep-ph]

  25. D. Stolarski, R. Vega-Morales, arXiv:1208.4840 [hep-ph]

  26. S.Y. Choi, M.M. Muhlleitner, P.M. Zerwas, arXiv:1209.5268 [hep-ph]

  27. P. Avery et al., arXiv:1210.0896 [hep-ph]

  28. C.-Q. Geng, D. Huang, Y. Tang, Y.-L. Wu, arXiv:1210.5103 [hep-ph]

  29. T. Modak, D. Sahoo, R. Sinha, arXiv:1301.5404 [hep-ph]

  30. M. Kado on behalf of the ATLAS Collaboration, Physics Jamboree at CERN, Dec. 13th, 2012, http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&contribId=0&sessionId=0&subContId=3&confId=218449

  31. S. Bolognesi on behalf of the CMS Collaboration, Physics Jamboree at CERN, Dec. 13th, 2012, http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&contribId=0&sessionId=0&subContId=2&confId=218449

  32. B. Coleppa, K. Kumar, H.E. Logan, Phys. Rev. D 86, 075022 (2012). arXiv:1208.2692 [hep-ph]

    Article  ADS  Google Scholar 

  33. P. Cea, arXiv:1209.3106 [hep-ph]

  34. A. Freitas, P. Schwaller, arXiv:1211.1980 [hep-ph]

  35. J. Ellis, D.S. Hwang, V. Sanz, T. You, arXiv:1208.6002 [hep-ph]

  36. T. Aaltonen, et al. (CDF and D0 Collaborations), arXiv:1207.6436 [hep-ex]

  37. TEVNPH Working Group, for the CDF and D0 Collaborations. arXiv:1207.0449 [hep-ex]

  38. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 710, 284 (2012). See also http://cms.web.cern.ch/org/cms-papers-and-results. arXiv:1202.4195 [hep-ex]

    Article  ADS  Google Scholar 

  39. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 718, 369–390 (2012). See also https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults. arXiv:1207.0210 [hep-ex]

    Article  ADS  Google Scholar 

  40. J. Ellis, V. Sanz, T. You, arXiv:1211.3068 [hep-ph]

  41. K. Hagiwara, Q. Li, K. Mawatari, J. High Energy Phys. 0907, 001 (2009). arXiv:0905.4314 [hep-ph]

    Google Scholar 

  42. M.R. Buckley, M.J. Ramsey-Musolf, J. High Energy Phys. 1109, 094 (2011). arXiv:1008.5151 [hep-ph]

    Article  ADS  Google Scholar 

  43. J.R. Andersen, C. Englert, M. Spannowsky, arXiv:1211.3011 [hep-ph]

  44. J. Frank, M. Rauch, D. Zeppenfeld, arXiv:1211.3658 [hep-ph]

  45. C. Englert, D. Goncalves-Netto, K. Mawatari, T. Plehn, arXiv:1212.0843 [hep-ph]

  46. C. Bernaciak, M.S.A. Buschmann, A. Butter, T. Plehn, arXiv:1212.4436 [hep-ph]

  47. A. Djouadi, R.M. Godbole, B. Mellado, K. Mohan, arXiv:1301.4965 [hep-ph]

  48. N. Arkani-Hamed, M. Porrati, L. Randall, J. High Energy Phys. 0108, 017 (2001). hep-th/0012148

    Article  MathSciNet  ADS  Google Scholar 

  49. R. Fok, C. Guimaraes, R. Lewis, V. Sanz, J. High Energy Phys. 1212, 062 (2012). arXiv:1203.2917 [hep-ph] (Examples on the limitations of the duality)

    Article  ADS  Google Scholar 

  50. J. Hirn, V. Sanz, Phys. Rev. Lett. 97, 121803 (2006). hep-ph/0606086

    Article  ADS  Google Scholar 

  51. J. Hirn, V. Sanz, J. High Energy Phys. 0512, 030 (2005). hep-ph/0507049

    Article  MathSciNet  ADS  Google Scholar 

  52. W. Buchmuller, D. Wyler, Nucl. Phys. B 268, 621 (1986)

    Article  ADS  Google Scholar 

  53. T. Verenna, see also http://tomverenna.wordpress.com/2010/02/15/a-secunda-facie-analysis-of-tacitus-on-jesus-and-as-a-historian/

  54. D.J. Miller, S.Y. Choi, B. Eberle, M.M. Muhlleitner, P.M. Zerwas, Phys. Lett. B 505, 149 (2001). hep-ph/0102023

    Article  ADS  Google Scholar 

  55. E. Massó, V. Sanz, arXiv:1211.1320 [hep-ph]

  56. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, Phys. Rev. D 86, 075013 (2012). arXiv:1207.1344 [hep-ph]

    Article  ADS  Google Scholar 

  57. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, Phys. Rev. D 87, 015022 (2013). arXiv:1211.4580 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of JE was supported partly by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. The work of TY was supported by a Graduate Teaching Assistantship from King’s College London. JE thanks CERN for kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tevong You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, J., Sanz, V. & You, T. Associated production evidence against Higgs impostors and anomalous couplings. Eur. Phys. J. C 73, 2507 (2013). https://doi.org/10.1140/epjc/s10052-013-2507-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2507-6

Keywords

Navigation