Skip to main content
Log in

Gravitational collapse of a magnetized fermion gas with finite temperature

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein–Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (“point-like”) and anisotropic (“cigar-like”), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m f ∼10−6 and T/m f ∼10−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Unless specified otherwise, we use natural units.

  2. All thermodynamic quantities are time dependent through their dependencies on the magnetic field, the chemical potential and the temperature which are time-dependent variables.

  3. As an example, considering the mass and charge of the electron yields the values b∼10−5B∼108 G, ϕ∼10−3T∼107 K and \(\tilde{\mu}=2\Rightarrow\mu\simeq 1~\hbox{MeV}\), which roughly correspond to the physical parameters of a white dwarf type astrophysical object.

References

  1. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983)

    Book  Google Scholar 

  2. S. Chakrabarty, Phys. Rev. D 43, 627 (1991)

    Article  ADS  Google Scholar 

  3. S. Chakrabarty, Phys. Rev. D 54, 1306 (1996). hep-ph/9603406

    Article  ADS  Google Scholar 

  4. M. Chaichian, S.S. Masood, C. Montonen, A. Perez Martinez, H. Perez Rojas, Phys. Rev. Lett. 84, 5261 (2000). hep-ph/9911218

    Article  ADS  Google Scholar 

  5. C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001). astro-ph/0011148

    Article  ADS  Google Scholar 

  6. R.G. Felipe, H.J. Mosquera Cuesta, A. Perez Martinez, H. Perez Rojas, Chin. J. Astron. Astrophys. 5, 399 (2005). astro-ph/0207150

    Article  ADS  Google Scholar 

  7. A. Perez Martinez, H. Perez Rojas, H. Mosquera Cuesta, Int. J. Mod. Phys. D 17, 2107 (2008). arXiv:0711.0975 [astro-ph]

    Article  ADS  MATH  Google Scholar 

  8. L. Paulucci, E.J. Ferrer, V. de la Incera, J.E. Horvath, Phys. Rev. D 83, 043009 (2011). arXiv:1010.3041 [astro-ph.HE]

    Article  ADS  Google Scholar 

  9. A.P. Martínez, H.P. Rojas, H.J. Mosquera Cuesta, Eur. Phys. J. C 29, 111 (2003)

    Article  ADS  Google Scholar 

  10. R.G. Felipe, A.P. Martinez, J. Phys. G 36, 075202 (2009). arXiv:0812.0337 [astro-ph]

    Article  ADS  Google Scholar 

  11. E.J. Ferrer, V. de la Incera, J.P. Keith et al., Phys. Rev. C 82, 065802 (2010)

    Article  ADS  Google Scholar 

  12. R.G. Felipe, D.M. Paret, A.P. Martinez, Eur. Phys. J. A 47, 1 (2011). arXiv:1003.3254 [astro-ph.HE]

    Article  ADS  Google Scholar 

  13. A. Ulacia Rey, A. Perez Martinez, R.A. Sussman, Gen. Relativ. Gravit. 40, 1499 (2008). arXiv:0708.0593 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  14. A. Ulacia Rey, A. Perez Martinez, R.A. Sussman, Int. J. Mod. Phys. D 16, 481 (2007). gr-qc/0605054

    Article  ADS  MATH  Google Scholar 

  15. D. Manreza Paret, A. Perez Martinez, A. Ulacia Rey, R.A. Sussman, J. Cosmol. Astropart. Phys. 1003, 017 (2010). arXiv:0812.2508 [gr-qc]

    Article  ADS  Google Scholar 

  16. H.Y. Chiu, V. Canuto, L. Fassio-Canuto, Phys. Rev. 176, 1438 (1968)

    Article  ADS  Google Scholar 

  17. V. Canuto, H.Y. Chiu, Phys. Rev. 173, 1229 (1968)

    Article  ADS  Google Scholar 

  18. V. Canuto, H.Y. Chiu, Phys. Rev. 173, 1220 (1968)

    Article  ADS  Google Scholar 

  19. V. Canuto, H.Y. Chiu, Phys. Rev. 173, 1210 (1968)

    Article  ADS  Google Scholar 

  20. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1998)

    Google Scholar 

  22. J. Wainwright, G.F.R. Ellis, Dynamical System in Cosmology (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  23. D. Ebert, K.G. Klimenko, M.A. Vdovichenko, A.S. Vshivtsev, Phys. Rev. D 61, 025005 (2000). hep-ph/9905253

    Article  ADS  Google Scholar 

  24. D. Ebert, K.G. Klimenko, Nucl. Phys. A 728, 203 (2003). hep-ph/0305149

    Article  ADS  MATH  Google Scholar 

  25. J.O. Andersen. hep-ph/9709331

  26. C.O. Dib, O. Espinosa, Nucl. Phys. B 612, 492 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A. Ayala, A. Sanchez, G. Piccinelli, S. Sahu, Phys. Rev. D 71, 023004 (2005). hep-ph/0412135

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of A.P.M, A.U.R and I.D.G has been supported by Ministerio de Ciencia, Tecnología y Medio Ambiente under the grant CB0407 and the ICTP Office of External Activities through NET-35. A.P.M. acknowledges the hospitality of ICN-UNAM and the financial support of ICyTDF-CLAF fellowship programme. R.A.S. and A.U.R. acknowledge support from the research grant SEP–CONACYT–132132, and the TWAS-CONACYT fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Delgado Gaspar.

Appendix A: Contributions to EOS

Appendix A: Contributions to EOS

The thermodynamical potential of a fermion gas has two contributions, see Eq. (9), and thus we can express the magnetization as \(M_{f}=M_{f}^{\mathrm{SQFT}}+M_{f}^{\mathrm{QFT}}\). Taking it into account we can rewrite the EOS (42)–(47) in the following form:

$$\begin{aligned} P_{\|} =&-\varOmega_f^\mathrm{SQFT} \underbrace{-\varOmega_f^\mathrm{QFT}-\frac{B^{2}}{2}} \\ \equiv& \overline{P}_{\|} (B,\mu,T ) +\Delta P_{\|} (B ), \end{aligned}$$
(51)
$$\begin{aligned} P_{\bot} =& -\varOmega_f^\mathrm{SQFT}-BM_f^\mathrm{SQFT} \underbrace{-\varOmega_f^\mathrm{QFT}-BM_f^\mathrm{QFT}+ \frac{B^{2}}{2}} \\ \equiv& \overline{P}_{\bot} (B,\mu,T ) +\Delta P_{\bot} (B ), \end{aligned}$$
(52)
$$\begin{aligned} U =&-\varOmega_f^\mathrm{SQFT}+TS+\mu N \underbrace{- \varOmega_f^\mathrm{QFT}+\frac{B^{2}}{2}} \\ \equiv& \overline{U} (B,\mu,T ) +\Delta U (B ), \end{aligned}$$
(53)

where we identify by \(\overline{P}_{\|}\), \(\overline{P}_{\bot}\) and \(\overline{U}\) the terms corresponding to our approximate EOS, while ΔP , ΔP , and ΔU represent those that have been neglected. Note that these last terms are only field dependent.

In order to analyze the contribution of ΔP , ΔP , and ΔU to its respective EOS, we evaluate the expressions \(\Delta P_{\|} / \overline{P}_{\|}\), \(\Delta P_{\bot} / \overline{P}_{\bot}\), and \(\Delta U / \overline{U}\) in the sets of solutions obtained previously. In all the cases the numerical results show that these terms are not significant for values of magnetic field less than or equal to the critical magnetic field.

To exemplify that mentioned above, in Fig. 7 we show the fractions of the EOS neglected during the evolution of the gas starting from ϕ(0)=10−3, b(0)=5×10−5, \(\tilde{\mu}(0)=2\), S 2(0)=0, and S 3(0)=1. As we can observe these values remain close to zero for BB c , specifically \(\Delta P_{\|} / \overline {P}_{\|}\), \(\Delta P_{\bot} / \overline{P}_{\bot}\), and \(\Delta U / \overline{U}\) remain below the line fraction=0.135. The graph of magnetic field is included for comparison.

Fig. 7
figure 7

In the upper (lower) part are shown the fraction of contribution to EOS of the neglected terms (values of magnetic field) versus proper time

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado Gaspar, I., Pérez Martínez, A., Sussman, R.A. et al. Gravitational collapse of a magnetized fermion gas with finite temperature. Eur. Phys. J. C 73, 2502 (2013). https://doi.org/10.1140/epjc/s10052-013-2502-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2502-y

Keywords

Navigation