Skip to main content
Log in

Effects of twisted noncommutativity in multi-particle Hamiltonians

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The non-commutativity induced by a Drinfel’d twist produces Bopp-shift-like transformations for deformed operators. In a single-particle setting the Drinfel’d twist allows to recover the non-commutativity obtained from various methods which are not based on Hopf algebras. In multi-particle sector, on the other hand, the Drinfel’d twist implies novel features. In conventional approaches to non-commutativity, deformed primitive operators are postulated to act additively. A Drinfel’d twist implies non-additive effects which are controlled by the coproduct. We stress that in our framework, the central element denoted as ħ is associated to an additive operator whose physical interpretation is that of the Particle Number operator.

We illustrate all these features for a class of (abelian twist-deformed) 2D Hamiltonians. Suitable choices of the parameters lead to the Hamiltonian of the non-commutative Quantum Hall Effect, the harmonic oscillator, the quantization of the configuration space. The non-additive effects in the multi-particle sector, leading to results departing from the existing literature, are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [10] the term “unfolded” was introduced in analogy with similar situations encountered in the linearization of non-linear W-algebras and in Vasiliev’s scheme for higher spin theory.

References

  1. V.G. Drinfel’d, Sov. Math. Dokl. 32, 254 (1985)

    Google Scholar 

  2. V.G. Drinfel’d, Dokl. Akad. Nauk SSSR 283, 1060 (1985)

    MathSciNet  Google Scholar 

  3. V.G. Drinfel’d, J. Sov. Math. 41, 898 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Reshetikin, Lett. Math. Phys. 20, 331 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  5. M.E. Sweedler, Hopf Algebras (Benjamin, New York, 1969)

    Google Scholar 

  6. E. Abe, Hopf Algebras (Cambridge University Press, Cambridge, 1980)

    MATH  Google Scholar 

  7. B. Chakraborty, Z. Kuznetsova, F. Toppan, J. Math. Phys. 51, 112102 (2010). arXiv:1002.1019

    Article  MathSciNet  ADS  Google Scholar 

  8. P.G. Castro, B. Chakraborty, R. Kullock, F. Toppan, J. Math. Phys. 52, 032102 (2011). arXiv:1012.5158

    Article  MathSciNet  ADS  Google Scholar 

  9. P.G. Castro, R. Kullock, F. Toppan, J. Math. Phys. 52, 062105 (2011). arXiv:1104.3852

    Article  MathSciNet  ADS  Google Scholar 

  10. F. Toppan, J. Phys. Conf. Ser. 343, 012123 (2012). arXiv:1203.1001

    Article  ADS  Google Scholar 

  11. J. Lukierski, P.C. Stichel, arXiv:hep-th/9606170

  12. G. Fiore, J. Math. Phys. 39, 3437 (1998). arXiv:q-alg/9610005

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. G. Fiore, Rev. Math. Phys. 12, 327 (2000). arXiv:q-alg/9708017

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Fiore, J. Phys. A 43, 155401 (2010). arXiv:0811.0773

    Article  MathSciNet  ADS  Google Scholar 

  15. P. Aschieri, Lectures on Hopf algebras, quantum groups and twists. arXiv:hep-th/0703013

  16. F.G. Scholtz, L. Gouba, A. Hafver, C.M. Rohwer, J. Phys. A 42, 175303 (2009). arXiv:0812.2803

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Kijanka, P. Kosiński, Phys. Rev. D 70, 127702 (2004). arXiv:hep-th/0407246

    Article  ADS  Google Scholar 

  18. L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125027 (2002). arXiv:hep-th/0111181

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Smailagic, E. Spallucci, Phys. Rev. D 65, 107701 (2002). arXiv:hep-th/0108216

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Dadic, L. Jonke, S. Meljanac, Acta Phys. Slovaca 55, 149 (2005). arXiv:hep-th/0301066

    Google Scholar 

  21. M.N. Hounkonnou, D.O. Samary, J. Math. Phys. 51, 102108 (2010). arXiv:1008.1325

    Article  MathSciNet  ADS  Google Scholar 

  22. O.F. Dayi, A. Jellal, J. Math. Phys. 43, 4592 (2002). arXiv:hep-th/0111267

    Article  MathSciNet  ADS  Google Scholar 

  23. Y.S. Myung, H.W. Lee, Noncommutative spacetime and fractional quantum Hall effect. arXiv:hep-th/9911031

  24. C. Duval, P. Horvathy, Phys. Lett. B 479, 284 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. C. Duval, P. Horvathy, J. Phys. A, Math. Gen. 34, 10097 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. D. Bigatti, L. Susskind, Phys. Rev. D 62, 066004 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Hellermann, M. van Raamsdonk, J. High Energy Phys. 10, 039 (2001)

    Article  ADS  Google Scholar 

  28. L. Susskind, The quantum Hall fluid and noncommutative Chern–Simons theory. arXiv:hep-th/0101029

  29. A.P. Polychronakos, J. High Energy Phys. 04, 011 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Horvathy, Ann. Phys. 299, 128 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. F.G. Scholtz, B. Chakraborty, S. Gangopadhyay, J. Govaerts, J. Phys. A, Math. Gen. 38, 9849 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. G. Fiore, P. Schupp, Nucl. Phys. B 470, 211 (1996). arXiv:hep-th/9508047

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. G. Fiore, Int. J. Mod. Phys. Conf. Ser. 13, 86 (2012). arXiv:1205.1429

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Chakraborty, G. Fiore and F. Scholtz for helpful discussions and to NITheP (where this paper was initiated) for hospitality. The work received support from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Toppan.

Appendix: The unfolded Lie algebra \(\mathcal{G}\)

Appendix: The unfolded Lie algebra \(\mathcal{G}\)

The structure constants of the unfolded Lie algebra \(\mathcal{G}\) whose generators are introduced in (1), are explicitly given by

$$\begin{aligned} \begin{aligned} & [x_i,p_j]=i\hbar \delta_{ij}, \\ & [x_i,P_{jj}]= 2i\delta_{ij} p_j, \qquad [p_i,X_{jj}] = -2 \delta_{ij}x_j, \\ & [x_i,M_{jk}] = 2i\delta_{ik}x_j, \qquad [p_i, M_{jk}]= -2i \delta_{ij}p_k, \\ & [x_1,P_S]=2ip_2,\qquad [x_2,P_S]=2ip_1, \\ & [p_1,X_S]=-2ix_2, \qquad [p_2,X_S]=-2ix_1, \\ & [X_{ii},P_{jj}] = 2i\delta_{ij} M_{ij}, \\ & [X_{11},P_S]=[X_S,P_{22}]=2iM_{12}, \\ & [X_{22},P_S]=[X_S,P_{11}]=2iM_{21}, \\ & [X_S,P_S] = 2i(M_{11}+M_{22}), \\ & [X_{ii}, M_{ii}] = 4i X_{ii},\qquad [X_{11}, M_{21}]=[X_{22},M_{12}]=2i X_S, \\ & [P_{ii}, M_{ii}] = -4i P_{ii}, \\ & [P_{11}, M_{12}]=[P_{22},M_{21}]=-2i P_S, \\ & [X_S, M_{ii}]=2 i X_S,\qquad [X_S, M_{12}]=4iX_{11}, \\ & [X_S,M_{21}] = 4i X_{22}, \\ & [P_S, M_{ii}]=-2 i P_S,\qquad [P_S, M_{12}]=-4iP_{22}, \\ & [P_S,M_{21}] =- 4i P_{11}, \\ & [M_{11},M_{12}]=-[M_{22},M_{12}]=-2i M_{12}, \\ & [M_{11}, M_{21}]=-[M_{22}, M_{21}]=2iM_{21}, \\ & [M_{12}, M_{21}] = 2i(M_{22}-M_{11}). \end{aligned} \end{aligned}$$
(A.1)

The remaining commutators are vanishing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, Z., Toppan, F. Effects of twisted noncommutativity in multi-particle Hamiltonians. Eur. Phys. J. C 73, 2483 (2013). https://doi.org/10.1140/epjc/s10052-013-2483-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2483-x

Keywords

Navigation