Skip to main content
Log in

Heavy flavors in AA collisions: production, transport and final spectra

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A multi-step setup for heavy-flavor studies in high-energy nucleus-nucleus (AA) collisions—addressing within a comprehensive framework the initial \(Q\overline{Q}\) production, the propagation in the hot medium until decoupling and the final hadronization and decays—is presented. The initial hard production of \(Q\overline{Q}\) pairs is simulated using the POWHEG pQCD event generator, interfaced with the PYTHIA parton shower. Outcomes of the calculations are compared to experimental data in pp collisions and are used as a validated benchmark for the study of medium effects. In the AA case, the propagation of the heavy quarks in the medium is described in a framework provided by the relativistic Langevin equation. For the latter, different choices of transport coefficients are explored (either provided by a perturbative calculation or extracted from lattice-QCD simulations) and the corresponding numerical results are compared to experimental data from RHIC and the LHC. In particular, outcomes for the nuclear modification factor R AA and for the elliptic flow v 2 of D/B mesons, heavy-flavor electrons and non-prompt J/ψ’s are displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 84, 044905 (2011)

    Article  ADS  Google Scholar 

  2. B.I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 98, 192301 (2007) [Erratum: Phys. Rev. Lett. 106, 159902 (2011)]

    Article  ADS  Google Scholar 

  3. B.I. Abelev et al. (ALICE Collaboration), J. High Energy Phys. 1209, 112 (2012)

    Article  ADS  Google Scholar 

  4. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1205 063 (2012) and CMS-PAS-HIN-12-014

    Article  ADS  Google Scholar 

  5. D. Tlusty (STAR Collaboration), Nucl. Phys. A 904–905, 639c (2013)

    Article  Google Scholar 

  6. G.M. Innocenti (ALICE Collaboration), Nucl. Phys. A 904–905, 433c (2013)

    Article  Google Scholar 

  7. I. Kuznetsova, J. Rafelski, Eur. Phys. J. C 51, 113 (2007)

    Article  ADS  Google Scholar 

  8. M. He, R.J. Fries, R. Rapp, Phys. Rev. Lett. 110, 112301 (2013)

    Article  ADS  Google Scholar 

  9. G.D. Moore, D. Teaney, Phys. Rev. C 71, 064904 (2005)

    Article  ADS  Google Scholar 

  10. H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008)

    Article  ADS  Google Scholar 

  11. Y. Akamatsu, T. Hatsuda, T. Hirano, Phys. Rev. C 79, 054907 (2009)

    Article  ADS  Google Scholar 

  12. P.B. Gossiaux, R. Bierkandt, J. Aichelin, Phys. Rev. C 79, 044906 (2009)

    Article  ADS  Google Scholar 

  13. J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Phys. Rev. C 84, 024908 (2011)

    Article  ADS  Google Scholar 

  14. S. Mazumder, T. Bhattacharyya, J. Alam, S.K. Das, Phys. Rev. C 84, 044901 (2011)

    Article  ADS  Google Scholar 

  15. M. He, R.J. Fries, R. Rapp, Phys. Rev. C 86, 014903 (2012)

    Article  ADS  Google Scholar 

  16. J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Phys. Lett. B 717, 430 (2012)

    Article  ADS  Google Scholar 

  17. M. He, H. van Hees, P.B. Gossiaux, R.J. Fries, R. Rapp, arXiv:1305.1425

  18. A. Beraudo, A. De Pace, W.M. Alberico, A. Molinari, Nucl. Phys. A 831, 59 (2009)

    Article  ADS  Google Scholar 

  19. W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, M. Monteno, M. Nardi, F. Prino, Eur. Phys. J. C 71, 1666 (2011)

    Article  ADS  Google Scholar 

  20. M. Monteno, W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, M. Nardi, F. Prino, J. Phys. G 38, 124144 (2011)

    Article  ADS  Google Scholar 

  21. W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, M. Monteno, M. Nardi, F. Prino, arXiv:1208.0705

  22. S. Frixione, P. Nason, G. Ridolfi, J. High Energy Phys. 0709, 126 (2007)

    Article  ADS  Google Scholar 

  23. K.J. Eskola, H. Paukkunen, C.A. Salgado, J. High Energy Phys. 0904, 065 (2009)

    Article  ADS  Google Scholar 

  24. P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000)

    Article  ADS  Google Scholar 

  25. P.F. Kolb, R. Rapp, Phys. Rev. C 67, 044903 (2003)

    Article  ADS  Google Scholar 

  26. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  ADS  Google Scholar 

  27. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008)

    Article  ADS  Google Scholar 

  28. M. Luzum, P. Romatschke, Phys. Rev. Lett. 103, 262302 (2009)

    Article  ADS  Google Scholar 

  29. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006)

    Article  ADS  Google Scholar 

  30. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 1006, 043 (2010)

    Article  ADS  Google Scholar 

  31. M. Cacciari, M. Greco, P. Nason, J. High Energy Phys. 9805, 007 (1998)

    Article  ADS  Google Scholar 

  32. M. Cacciari, M. Greco, P. Nason, J. High Energy Phys. 0103, 006 (2001)

    Article  ADS  Google Scholar 

  33. A. Francis, O. Kaczmarek, M. Laine, J. Langelage, PoS Lattice 2011, 202 (2011)

    Google Scholar 

  34. D. Banerjee, S. Datta, R. Gavai, P. Majumdar, Phys. Rev. D 85, 014510 (2012)

    Article  ADS  Google Scholar 

  35. S. Frixione, B.R. Webber, arXiv:0812.0770, CAVENDISH-HEP-08-14

  36. S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 44, 351 (2005)

    Article  ADS  Google Scholar 

  37. R. Barate et al. (ALEPH Collaboration), Eur. Phys. J. C 16, 597 (2000)

    Article  ADS  Google Scholar 

  38. D. Asner et al. (Heavy Flavor Averaging Group Collaboration), arXiv:1010.1589

  39. E. Braaten, K.M. Cheung, S. Fleming, T.C. Yuan, Phys. Rev. D 51, 4819 (1995)

    Article  ADS  Google Scholar 

  40. M. Cacciari, P. Nason, J. High Energy Phys. 0309, 006 (2003)

    Article  ADS  Google Scholar 

  41. V.G. Kartvelishvili, A.K. Likhoded, V.A. Petrov, Phys. Lett. B 78, 615 (1978)

    Article  ADS  Google Scholar 

  42. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, J. High Energy Phys. 0407, 033 (2004)

    Article  ADS  Google Scholar 

  43. A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 512, 30 (2001)

    Article  ADS  Google Scholar 

  44. K. Abe et al. (SLD Collaboration), Phys. Rev. D 65, 092006 (2002) [Erratum: Phys. Rev. D 66, 079905 (2002)]

    Article  ADS  Google Scholar 

  45. B.I. Abelev et al. (ALICE Collaboration), J. High Energy Phys. 1201, 128 (2012)

    Article  ADS  Google Scholar 

  46. M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason, G. Ridolfi, J. High Energy Phys. 1210, 137 (2012)

    Article  ADS  Google Scholar 

  47. B.I. Abelev et al. (ALICE Collaboration), J. High Energy Phys. 1207, 191 (2012)

    Article  ADS  Google Scholar 

  48. M. Kweon (ALICE Collaboration), arXiv:1208.5411

  49. L. Adamczyk et al. (STAR Collaboration), Phys. Rev. D 86, 072013 (2012)

    Article  ADS  Google Scholar 

  50. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 252001 (2011)

    Article  ADS  Google Scholar 

  51. J. Casalderrey-Solana, D. Teaney, Phys. Rev. D 74, 085012 (2006)

    Article  ADS  Google Scholar 

  52. S. Caron-Huot, M. Laine, G.D. Moore, J. High Energy Phys. 0904, 053 (2009)

    Article  ADS  Google Scholar 

  53. K.J. Eskola, H. Paukkunen, C.A. Salgado, J. High Energy Phys. 0904, 065 (2009)

    Article  ADS  Google Scholar 

  54. H. van Hees, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006)

    Article  ADS  Google Scholar 

  55. S. Sakai (ALICE Collaboration), Nucl. Phys. A 904–905, 661c (2013)

    Article  Google Scholar 

  56. U.W. Heinz, Early collective expansion: Relativistic hydrodynamics and the transport properties of QCD matter, in Relativistic Heavy Ion Physics, ed. by R. Stock. Landolt–Boernstein New Series, vol. I/23 (Springer, New York, 2010), Chap. 5. arXiv:0901.4355

    Google Scholar 

  57. B.I. Abelev et al. (ALICE Collaboration), arXiv:1305.2707

  58. M. Mustafa (STAR Collaboration), Nucl. Phys. A 904–905, 665c (2013)

    Article  Google Scholar 

  59. S. Chatrchyan et al. (CMS Collaboration), CMS-PAS-HIN-12-014

  60. L. Del Zanna, V. Chandra, G. Inghirami, V. Rolando, A. Beraudo, A. De Pace, G. Pagliara, A. Drago, F. Becattini, arXiv:1305.7052

  61. M. Nahrgang, J. Aichelin, P.B. Gossiaux, K. Werner, arXiv:1305.3823

Download references

Acknowledgements

The authors would like to thank Mateusz Ploskon and Daniel Kikola for providing them preliminary heavy-flavor data by ALICE and STAR and Torsten Dahms for fruitful discussions. This research has been supported by the Italian Ministry of University and Public Instruction, under National Project 2009WA4R8W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De Pace.

Appendix: Lattice transport coefficients

Appendix: Lattice transport coefficients

For the sake of self-consistency, in this appendix, following the steps of Ref. [51], we display how the heavy quark momentum-diffusion coefficient κ can be given a general quantum field theory definition and how it can be expressed in terms of quantities accessible by lattice-QCD simulations.

One has to address the quite common situation of a “system” (the heavy quark) coupled to an “environment” (the thermal bath of gluons and light quarks).

We have shown in Eq. (10) how κ is related to the following force–force correlator:

$$ D^>(t)\equiv\frac{1}{3} \bigl\langle F^i(t)F^i(0) \bigr\rangle_\mathrm{HQ}. $$
(A.1)

Analogously, one defines D <(t)≡(1/3)〈F i(0)F i(t)〉HQ. KMS boundary conditions entail for their Fourier transforms D <(ω)=e βω D >(ω). One has then for the corresponding spectral function:

$$ \sigma(\omega)\equiv D^>(\omega)-D^<(\omega)= \bigl(1-e^{-\beta\omega }\bigr)D^>(\omega). $$
(A.2)

The momentum-diffusion coefficient reflects the ω→0 limit of the above spectral density. In fact:

$$ \kappa\equiv\int_{-\infty}^{+\infty} dt\, D^>(t)=D^>(\omega=0). $$
(A.3)

Hence one has

$$ \kappa=\lim_{\omega\to 0}\frac{\sigma(\omega)}{1-e^{-\beta\omega}} =\lim_{\omega\to 0} \frac{T}{\omega}\sigma(\omega), $$
(A.4)

σ(ω) being the quantity extracted from lattice-QCD simulations. For the latter one needs to consider the coupling of a (infinitely) heavy quark with the color field. The starting point is the M→∞ limit of the NRQCD Lagrangian

$$ \mathcal{L}=Q^\dagger(i\partial_0+gA_0)Q, $$
(A.5)

with the non-relativistic fields obeying the anticommutation relation

$$ \bigl\{Q_i(t,\mathbf{x}),Q_j^\dagger(t,\mathbf{y}) \bigr\}= \delta_{ij}\delta(\mathbf{x}-\mathbf{y}) $$
(A.6)

and the heavy-quark evolution being described the path-ordered exponential U(t,t 0):

$$\begin{aligned} Q_i(t) =& \mathcal{P}\exp \biggl[ig \int_{t_0}^t A_0\bigl(t'\bigr)dt' \biggr]_{ij} Q_j(t_0) \\ =&U_{ij}(t,t_0)Q_j(t_0). \end{aligned}$$
(A.7)

One needs then to define the expectation value in Eq. (A.1)

$$ \bigl\langle F^i(t)F^i(0) \bigr\rangle_\mathrm{HQ} \equiv \frac{\sum_s\langle s|e^{-\beta H}F^i(t)F^i(0)|s\rangle}{\sum_s\langle s|e^{-\beta H}|s\rangle} , $$
(A.8)

which is taken over a thermal ensemble of states |s〉 of the environment plus one additional heavy quark, namely:

$$ \sum_s\langle s|\dots|s\rangle\equiv\sum _{s'}\int d\mathbf{x}\, \langle s'|Q_i(-T, \mathbf{x}) \dots Q_i^\dagger(-T,\mathbf{x})|s'\rangle. $$
(A.9)

Viewing the thermal weight e βH as the imaginary-time translation operator, so that

(A.10)

and exploiting the anticommutation relation (A.6) one gets for the HQ partition function appearing in the denominator of Eq. (A.8)

$$\begin{aligned} Z_\mathrm{HQ} =&\sum_{s'}\int d\mathbf{x}\, \langle s'|Q_i(-T,\mathbf{x}) e^{-\beta H} Q_i^\dagger(-T, \mathbf{x})|s'\rangle \\ =&V_\mathrm{PS}\sum_{s'}\langle s'|e^{-\beta H}U_{ii}(-T-i\beta,-T)|s'\rangle \\ =&V_\mathrm{PS} \bigl\langle\mathrm{Tr}\,U(-T-i\beta,-T)\bigr\rangle Z_0, \end{aligned}$$
(A.11)

where now the thermal average is taken over the states of the environment only, with partition function Z 0≡∑ ss′|e βH|s′〉, and the phase space volume arises from

$$ \int d\mathbf{x}\,\delta(\mathbf{x}-\mathbf{x})=\int d\mathbf{x}\int d\mathbf{p}/(2\pi)^3=V_\mathrm{PS}. $$

The numerator in Eq. (A.8) can be evaluated analogously starting from

(A.12)

One gets then

(A.13)

The above definition is the one used in Ref. [51], in which the AdS/CFT correspondence allows the derivation of real-time quantities in strongly coupled gauge theories (\(\mathcal{N}=4\) SYM). However, in lattice-QCD one has to rely on lattice simulations carried on in Euclidean time. Equation (A.13) has to be accordingly generalized. In Refs. [33, 34] the authors evaluated then the following Euclidean electric-field correlator [52]:

$$ D_E(\tau)=-\frac{1}{3}\frac{\langle\mathrm{Tr}[U(\beta,\tau)gE^i (\tau)U(\tau)gE^i(0)]\rangle}{\langle \operatorname {Tr}U(\beta,0)\rangle} $$
(A.14)

and from the latter they extracted the spectral function σ(ω) entering in Eq. (A.4) according to

$$ D_E(\tau)=\int_0^\infty \frac{d\omega}{2\pi}\sigma(\omega)\frac {\cosh[(\beta/2-\tau)\omega]}{\sinh(\beta\omega/2)}. $$
(A.15)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberico, W.M., Beraudo, A., De Pace, A. et al. Heavy flavors in AA collisions: production, transport and final spectra. Eur. Phys. J. C 73, 2481 (2013). https://doi.org/10.1140/epjc/s10052-013-2481-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2481-z

Keywords

Navigation