Skip to main content
Log in

Revisiting the \(B^{(*)}_{s}\)-meson production at the hadronic colliders

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The hadronic production of the heavy-flavored hadron provides a challenging opportunity to test the validity of pQCD predictions. In the paper, we make a comparative study on the properties of the \(B^{(*)}_{s}\) hadroproduction within either the fixed-flavor-number scheme (FFNS) or the general-mass variable-flavor-number scheme (GM-VFNS). By using FFNS, as is previously adopted in the literature, one only needs to deal with the dominant gluon–gluon fusion mechanism via the subprocess \(g+g\rightarrow B^{(*)}_{s}+b+\bar{s}\). While by using GM-VFNS, one needs to deal with two mechanisms: one is the gluon–gluon fusion mechanism and the other is the extrinsic heavy quark mechanism via the subprocesses \(g+\bar{b}\to B^{(*)}_{s} +\bar{s}\) and \(g+s\to B^{(*)}_{s} +b\). It is found that both mechanisms can provide reasonable contributions to the \(B^{(*)}_{s}\) hadroproduction under the GM-VFNS, and there is double counting for those two mechanisms in specific kinematic regions. At the Tevatron, the differences between the estimations of FFNS and GM-VFNS are small, e.g. after cutting off the small p T events (cf. p T >4 GeV), the \(B^{(*)}_{s}\) p T -distributions are almost coincide with each other. However, these differences are obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the \(B^{(*)}_{s}\)-meson production and to further study the heavy quark components in hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Such large cancelation is reasonable, since the ‘SUB.’-term as defined by Eq. (2) provides the leading log contribution to the heavy quark PDF. At small p T region, most of the events are small x events, and the differences for the cross sections are further amplified by large values of PDFs at small x region. This conceptually explains why there is large cancelation at high p T but not at small p T regions.

  2. Other uncertainty sources shall give similar behaviors under both GM-VFNS and FFNS, which has been deeply analyzed under FFNS in Ref. [20], and to shorten the paper, we do not present extra discussions on other uncertainties.

  3. Under FFNS, by varying the flavor number with the energy scale, the value of α s shall be decreased, but this is to a large degree compensated by a larger gluon distribution function (i.e. in small x-region that is dominant for the production, \(F^{g}_{H}({\rm CTEQ6L1})>F^{g}_{H}({\rm CTEQ5F3})\)), so as a whole, there is small difference by using CTEQ6L1 and CTEQ5F3.

References

  1. F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 75, 1451 (1995)

    Article  ADS  Google Scholar 

  2. D.E. Acosta et al. (CDF Collaboration), Phys. Rev. D 66, 052005 (2002)

    Article  ADS  Google Scholar 

  3. D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005)

    Article  ADS  Google Scholar 

  4. A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 75, 012010 (2007)

    Article  ADS  Google Scholar 

  5. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 082001 (2008)

    Article  ADS  Google Scholar 

  6. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 79, 092003 (2009)

    Article  ADS  Google Scholar 

  7. S. Abachi et al. (D0 Collaboration), Phys. Rev. Lett. 74, 3548 (1995)

    Article  ADS  Google Scholar 

  8. B. Abbott et al. (D0 Collaboration), Phys. Rev. Lett. 84, 5478 (2000)

    Article  ADS  Google Scholar 

  9. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 94, 042001 (2005)

    Article  ADS  Google Scholar 

  10. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 98, 121801 (2007)

    Article  ADS  Google Scholar 

  11. N. Brambilla et al. (Quarkonium Working Group), Published as CERN yellow report, CERN-2005-005, arXiv:hep-ph/0412158

  12. N. Brambilla et al. (Quarkonium Working Group), Eur. Phys. J. C 71, 1 (2011)

    Article  Google Scholar 

  13. V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 112001 (2011)

    Article  ADS  Google Scholar 

  14. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 252001 (2011)

    Article  ADS  Google Scholar 

  15. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 84, 052008 (2011)

    Article  ADS  Google Scholar 

  16. G. Aad et al. (ATLAS Collaboration), Nucl. Phys. B 864, 341 (2011)

    Article  ADS  Google Scholar 

  17. P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 327, 49 (1989)

    Article  ADS  Google Scholar 

  18. W. Beenakker, H. Kuijf, W.L. Van Neerven, J. Smith, Phys. Rev. D 40, 54 (1989)

    Article  ADS  Google Scholar 

  19. S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, Adv. Ser. Dir. High Energy Phys. 15, 609 (1998)

    Article  ADS  Google Scholar 

  20. J.W. Zhang, Z.Y. Fang, C.H. Chang, X.G. Wu, T. Zhong, Y. Yu, Phys. Rev. D 79, 114012 (2009)

    Article  ADS  Google Scholar 

  21. C.F. Qiao, J. Phys. G 29, 1075 (2003)

    Article  ADS  Google Scholar 

  22. C.H. Chang, C.F. Qiao, J.X. Wang, X.G. Wu, Phys. Rev. D 72, 114009 (2005)

    Article  ADS  Google Scholar 

  23. C.H. Chang, C.F. Qiao, J.X. Wang, X.G. Wu, Phys. Rev. D 73, 094022 (2006)

    Article  ADS  Google Scholar 

  24. C.H. Chang, J.P. Ma, C.F. Qiao, X.G. Wu, J. Phys. G 34, 845 (2007)

    Article  Google Scholar 

  25. J. Collins, F. Wilczek, A. Zee, Phys. Rev. D 18, 242 (1978)

    Article  ADS  Google Scholar 

  26. J. Amundson, C. Schmidt, W.K. Tung, X.N. Wang, J. High Energy Phys. 10, 031 (2000)

    Article  ADS  Google Scholar 

  27. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 71, 014018 (2005)

    Article  ADS  Google Scholar 

  28. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Eur. Phys. J. C 41, 199 (2005)

    Article  ADS  Google Scholar 

  29. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. Lett. 96, 012001 (2006)

    Article  ADS  Google Scholar 

  30. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Phys. Rev. D 77, 014011 (2008)

    Article  ADS  Google Scholar 

  31. S.J. Brodsky, C. Peterson, N. Sakai, Phys. Rev. D 23, 2745 (1981)

    Article  ADS  Google Scholar 

  32. S.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, Phys. Lett. B 93, 451 (1980)

    Article  ADS  Google Scholar 

  33. R. Vogt, S.J. Brodsky, Nucl. Phys. B 478, 311 (1996)

    Article  ADS  Google Scholar 

  34. T. Gutierrez, R. Vogt, Nucl. Phys. B 539, 189 (1996)

    Article  ADS  Google Scholar 

  35. G. Ingelman, M. Thunman, Z. Phys. C 73, 505 (1997)

    Google Scholar 

  36. J. Pumplin, Phys. Rev. D 73, 1140015 (2006)

    Article  Google Scholar 

  37. M. Franz, M.V. Polyakov, K. Goeke, Phys. Rev. D 62, 074024 (2000)

    Article  ADS  Google Scholar 

  38. G. Zweig, CERN reports Th. 401 and 412 (1964), and in Proc. Int. School of Phys. “ettore Majorana”, Erice, Italy (1964), A. Zichichi (Ed.), p. 192 (Academic, New York)

  39. S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  40. C.H. Chang, C. Driouich, P. Eerola, X.G. Wu, Comput. Phys. Commun. 159, 192 (2004)

    Article  ADS  Google Scholar 

  41. R. Kleiss, W.J. Stirling, Comput. Phys. Commun. 40, 359 (1986)

    Article  ADS  Google Scholar 

  42. G.P. Lepage, J. Comput. Phys. 27, 192 (1978)

    Article  ADS  MATH  Google Scholar 

  43. C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 174, 241 (2006)

    Article  ADS  Google Scholar 

  44. C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 175, 624 (2006)

    Article  ADS  Google Scholar 

  45. X.Y. Wang, X.G. Wu, Comput. Phys. Commun. 183, 442 (2012)

    Article  ADS  Google Scholar 

  46. C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 177, 467 (2007)

    Article  ADS  Google Scholar 

  47. C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 181, 1144 (2010)

    Article  ADS  MATH  Google Scholar 

  48. X.Y. Wang, X.G. Wu, Comput. Phys. Commun. 184, 1070 (2013)

    Article  ADS  Google Scholar 

  49. M.A.G. Aivazis, J.C. Collins, F.I. Olness, W.K. Tung, Phys. Rev. D 50, 3102 (1994)

    Article  ADS  Google Scholar 

  50. M.A.G. Aivazis, F.I. Olness, W.K. Tung, Phys. Rev. D 50, 3085 (1994)

    Article  ADS  Google Scholar 

  51. F.I. Olness, R.J. Scalise, W.K. Tung, Phys. Rev. D 59, 014506 (1998)

    Article  ADS  Google Scholar 

  52. P. Dimopoulos et al. (ETM Collaboration), J. High Energy Phys. 01, 046 (2012)

    Article  ADS  Google Scholar 

  53. E.J. Eichten, C. Quigg, Phys. Rev. D 49, 5845 (1994)

    Article  ADS  Google Scholar 

  54. Y.Q. Chen, Y.P. Kuang, Phys. Rev. D 46, 1165 (1992)

    Article  ADS  Google Scholar 

  55. S. Kretzer, H.L. Lai, F.I. Olness, W.K. Tung, Phys. Rev. D 69, 114005 (2004)

    Article  ADS  Google Scholar 

  56. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002)

    Article  ADS  Google Scholar 

  57. H.L. Lai et al., Eur. Phys. J. C 12, 375 (2000)

    Article  ADS  Google Scholar 

  58. C.H. Chang, X.G. Wu, Eur. Phys. J. C 38, 267 (2004)

    Article  ADS  Google Scholar 

  59. C.H. Chang, C.F. Qiao, J.X. Wang, X.G. Wu, Phys. Rev. D 72, 114009 (2005)

    Article  ADS  Google Scholar 

  60. W.C. Chang, J.C. Peng, Phys. Lett. B 704, 197 (2011)

    Article  ADS  Google Scholar 

  61. S.J. Brodsky, G. de Teramond, M. Karliner, Annu. Rev. Nucl. Part. Sci. 62, 1 (2012)

    Article  ADS  Google Scholar 

  62. S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg, Phys. Rep. 522, 239 (2013)

    Article  ADS  Google Scholar 

  63. M. Cacciari, M. Greco, P. Nason, J. High Energy Phys. 9805, 007 (1998)

    Article  ADS  Google Scholar 

  64. M. Cacciari, P. Nason, Phys. Rev. Lett. 89, 122003 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Research Foundation of Chongqing University of Science & Technology under Grant No. CK2011B34, by Natural Science Foundation of China under Grant No. 11075225 and No. 11275280, by the Program for New Century Excellent Talents in University under Grant No. NCET-10-0882, and by the Fundamental Research Funds for the Central Universities under Grant No. WLYJSBJRCGR201106 and No. CQDXWL-2012-Z002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Gang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JW., Chen, XW., Jiang, J. et al. Revisiting the \(B^{(*)}_{s}\)-meson production at the hadronic colliders. Eur. Phys. J. C 73, 2464 (2013). https://doi.org/10.1140/epjc/s10052-013-2464-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2464-0

Keywords

Navigation