Skip to main content
Log in

Exclusive double diffractive events: general framework and prospects

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the general theoretical framework to study exclusive double diffractive events (EDDE). It is a powerful tool to explore the picture of the pp interaction. Basic kinematical and dynamical properties of the process, and also normalization of parameters via standard processes like the exclusive vector meson production (EVMP), are considered in detail. As an example, calculations of the cross-sections in the model with three pomerons for the process p+pp+M+p are presented for Tevatron and LHC energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.W. Kibble, Proc. R. Soc., Lond. A 244, 355 (1958)

    Article  ADS  Google Scholar 

  2. A.A. Logunov, A.N. Tavkhelidze, Nucl. Phys. 8, 374 (1958)

    Article  MATH  Google Scholar 

  3. S.S. Gershtein, A.A. Logunov, Sov. J. Nucl. Phys. 39, 960 (1984) [Yad. Fiz. 39, 1514 (1984)]

    Google Scholar 

  4. K.A. Ter-Martirosyan, Nucl. Phys. 68, 591 (1964)

    MathSciNet  Google Scholar 

  5. K.G. Boreskov, Yad. Fiz. 8, 796 (1968)

    Google Scholar 

  6. A. Actor, Ann. Phys. 109, 317 (1977)

    Article  ADS  Google Scholar 

  7. J. Pumplin, F.S. Henyey, Nucl. Phys. B 117, 377 (1976)

    Article  ADS  Google Scholar 

  8. A. Bialas, P.V. Landshoff, Phys. Lett. B 256, 540 (1991)

    ADS  Google Scholar 

  9. B.R. Desai, B.C. Shen, M. Jacob, Nucl. Phys. B 142, 258 (1978)

    Article  ADS  Google Scholar 

  10. L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 72, 2110 (2012)

    Article  ADS  Google Scholar 

  11. V.A. Khoze, A.D. Martin, M.G. Ryskin, Frascati Phys. Ser. 44, 147 (2007)

    Google Scholar 

  12. V.A. Khoze, A.B. Kaidalov, A.D. Martin, M.G. Ryskin, DCPT-05-72, IPPP-05-36. arXiv:hep-ph/0507040

  13. L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 69, 179 (2010)

    Article  ADS  Google Scholar 

  14. V.A. Petrov, R.A. Ryutin, J. High Energy Phys. 0408, 013 (2004)

    ADS  Google Scholar 

  15. V.A. Petrov, R.A. Ryutin, J. Phys. G 35, 065004 (2008)

    Article  ADS  Google Scholar 

  16. V.A. Petrov, R.A. Ryutin, Eur. Phys. J. C 36, 509 (2004)

    Article  ADS  Google Scholar 

  17. J.R. Cudell, A. Dechambre, O.F. Hernandez, Phys. Lett. B 706, 333 (2012)

    ADS  Google Scholar 

  18. M.G. Albrow, T.D. Coughlin, J.R. Forshaw, Prog. Part. Nucl. Phys. 65, 149 (2010)

    Article  ADS  Google Scholar 

  19. E.V. Shuryak, I. Zahed, Phys. Rev. D 68, 034001 (2003)

    Article  ADS  Google Scholar 

  20. D. Kharzeev, E. Levin, Phys. Rev. D 63, 073004 (2001)

    ADS  Google Scholar 

  21. J. Ellis, D. Kharzeev. Preprint CERN-TH-98-349. arXiv:hep-ph/9811222

  22. N.I. Kochelev, arXiv:hep-ph/9902203

  23. R.C. Brower, M. Djuric, C.-I. Tan, J. High Energy Phys. 1209, 097 (2012)

    Article  ADS  Google Scholar 

  24. M.V.T. Machado, Phys. Rev. D 86, 014029 (2012)

    ADS  Google Scholar 

  25. B.Z. Kopeliovich, I. Schmidt, Nucl. Phys. A 782, 118 (2007)

    Article  ADS  Google Scholar 

  26. A. Bzdak, Phys. Lett. B 615, 240 (2005)

    ADS  Google Scholar 

  27. E. Gotsman, H. Kowalski, E. Levin, U. Maor, A. Prygarin, Eur. Phys. J. C 47, 655 (2006)

    Article  ADS  Google Scholar 

  28. S.M. Troshin, N.E. Tyurin, Mod. Phys. Lett. A 23, 169 (2008)

    Article  ADS  Google Scholar 

  29. R. Enberg, G. Ingelman, N. Timneanu, Eur. Phys. J. C 33, S542 (2004)

    Article  ADS  Google Scholar 

  30. C.P. Herzog, S. Paik, M.J. Strassler, E.G. Thompson, J. High Energy Phys. 0808, 010 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. D.M. Chew, Nucl. Phys. 82, 422 (1974)

    Article  ADS  Google Scholar 

  32. Yu.D. Prokoshkin, IFVE-85-32 (1985)

  33. WA102 Collaboration, Phys. Lett. B 427, 398 (1998)

    ADS  Google Scholar 

  34. WA102 Collaboration, Phys. Lett. B 467, 165 (1999)

    Google Scholar 

  35. WA102 Collaboration, Phys. Lett. B 474, 423 (2000)

    Google Scholar 

  36. WA102 Collaboration, Phys. Lett. B 462, 462 (1999)

    Google Scholar 

  37. A. Kirk, Phys. Lett. B 489, 29 (2000)

    ADS  Google Scholar 

  38. K. Goulianos (CDF II Collaboration), arXiv:1204.5241 [hep-ex]

  39. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 77, 052004 (2008)

    ADS  Google Scholar 

  40. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 108, 081801 (2012)

    Article  ADS  Google Scholar 

  41. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 242002 (2007)

    Article  ADS  Google Scholar 

  42. G.A. Alves et al. (CMS Collaboration), J. High Energy Phys. (2012 accepted). CMS-PAS-FWD-11-004, CERN-PH-EP-2012-246

  43. D. Moran, CERN-THESIS-2011-209 (2011)

  44. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 242001 (2009)

    Article  ADS  Google Scholar 

  45. L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 71, 1714 (2011)

    Article  ADS  Google Scholar 

  46. V.A. Petrov, A.V. Prokudin, R.A. Ryutin, Czechoslov. J. Phys. 55, 17 (2005)

    Article  ADS  Google Scholar 

  47. V.A. Petrov, A.V. Prokudin, Eur. Phys. J. C 23, 135 (2002)

    Article  ADS  Google Scholar 

  48. J.D. Bjorken, Phys. Rev. D 47, 101 (1993)

    ADS  Google Scholar 

  49. F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 74, 855 (1995)

    Article  ADS  Google Scholar 

  50. M.G. Albrow, A. Rostovtsev, FERMILAB-PUB-00-173 (2000). arXiv:hep-ph/0009336 [hep-ph]

  51. J. Pumplin, Phys. Rev. D 52, 1477 (1995)

    Article  ADS  Google Scholar 

  52. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 19, 477 (2001). Erratum-ibid. C 20, 599 (2001)

    Article  ADS  Google Scholar 

  53. A. De Roeck, V.A. Khoze, A.D. Martin, R. Orava, M.G. Ryskin, Eur. Phys. J. C 25, 391 (2002)

    Article  ADS  Google Scholar 

  54. J.G. Rushbrooke, B.R. Webber, Nucl. Phys. B 88, 145 (1975)

    Article  ADS  Google Scholar 

  55. A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 31, 387 (2003)

    Article  ADS  Google Scholar 

  56. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 24, 581 (2002)

    Article  Google Scholar 

  57. F.E. Close, G.A. Schuller, Phys. Lett. B 458, 127 (1999)

    ADS  Google Scholar 

  58. F.E. Close, G.A. Schuller, Phys. Lett. B 464, 279 (1999)

    ADS  Google Scholar 

  59. V.A. Petrov, R.A. Ryutin, A.E. Sobol, J.-P. Guillaud, J. High Energy Phys. 0506, 007 (2005)

    Article  ADS  Google Scholar 

  60. K. Eggert, Nucl. Phys. B, Proc. Suppl. 122, 447 (2003)

    Article  ADS  Google Scholar 

  61. M.G. Albrow et al. (FP420 R&D Collaboration), J. Instrum. 4, T10001 (2009)

    Article  Google Scholar 

  62. M. Albrow et al. (USCMS Collaboration), J. Instrum. 4, P10001 (2009)

    Article  Google Scholar 

  63. M. Tasevsky (ATLAS Collaboration), AIP Conf. Proc. 1350, 164 (2010)

    Google Scholar 

  64. V.A. Khoze, F. Krauss, A.D. Martin, M.G. Ryskin, K.C. Zapp, Eur. Phys. J. C 69, 85 (2010)

    Article  ADS  Google Scholar 

  65. J.H. Lee (STAR Collaboration), arXiv:0908.4552 [hep-ex]

  66. J.H. Lee (STAR Collaboration), Proc. Sci. DIS2010, 076 (2010)

    Google Scholar 

  67. W. Guryn (STAR Collaboration), arXiv:0808.3961 [nucl-ex]

  68. W. Guryn, Acta Phys. Pol. B 40, 1897 (2009)

    ADS  Google Scholar 

  69. S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 24, 345 (2002)

    Article  Google Scholar 

  70. S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 680, 4 (2009)

    ADS  Google Scholar 

  71. J. Breitweg et al. (ZEUS Collaboration), Phys. Lett. B 437, 432 (1998)

    ADS  Google Scholar 

  72. M. Derrick et al. (ZEUS Collaboration), Z. Phys. C 73, 73 (1996)

    Google Scholar 

  73. J. Breitweg et al. (ZEUS Collaboration), Eur. Phys. J. C 2, 247 (1998)

    Article  ADS  Google Scholar 

  74. M. Derrick et al. (ZEUS Collaboration), Phys. Lett. B 377, 259 (1996)

    ADS  Google Scholar 

  75. R. Gastmans, T.T. Wu, The Ubiquitous Photon: Helicity Method for QED and QCD (Clarendon, Oxford, 1990), 648 p.

    Google Scholar 

  76. C.S. Kim, E. Mirkes, Phys. Rev. D 51, 3340 (1995)

    Article  ADS  Google Scholar 

  77. M. Kramer, Prog. Part. Nucl. Phys. 47, 141 (2001)

    Article  ADS  Google Scholar 

  78. C.G. Callan, D.J. Gross, Phys. Rev. Lett. 22, 156 (1969)

    Article  ADS  Google Scholar 

  79. C.G. Callan, D.J. Gross, Phys. Rev. Lett. 21, 311 (1968)

    Article  ADS  Google Scholar 

  80. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 14, 525 (2000)

    Article  ADS  Google Scholar 

  81. A. Berera, J.C. Collins, Nucl. Phys. B 474, 183 (1996)

    Article  ADS  Google Scholar 

  82. L. Motyka, G. Watt, Phys. Rev. D 78, 014023 (2008)

    ADS  Google Scholar 

  83. L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 65, 433 (2010)

    Article  ADS  Google Scholar 

  84. V.A. Khoze, A.D. Martin, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 35, 211 (2004)

    Article  ADS  Google Scholar 

  85. R. Staszewski, P. Lebiedowicz, M. Trzebinski, J. Chwastowski, A. Szczurek, Acta Phys. Pol. B 42, 1861 (2011)

    Article  Google Scholar 

  86. A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 33, 261 (2004)

    Article  ADS  Google Scholar 

  87. The TOTEM Collaboration, Europhys. Lett. 95, 41001 (2011)

    Article  ADS  Google Scholar 

  88. The TOTEM Collaboration, Europhys. Lett. 96, 21002 (2011)

    Article  ADS  Google Scholar 

  89. A.A. Godizov, Proc. Sci. IHEP-LHC-2011, 005 (2012). arXiv:1203.6013 [hep-ph]

    Google Scholar 

  90. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 23, 311 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author thanks to V.A. Petrov, A.V. Prokudin, A.A. Godizov for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Ryutin.

Appendices

Appendix A

Here we collect basic expressions for gluon–gluon fusion partonic cross-sections of the type g+ga+b. Some of them can be found, for example, in [90] (gggg, \(gg\to Q\bar{Q}\)) and [75] (ggγγ).

(A.1)
(A.2)
(A.3)

where η=(η a η b )/2, M is the invariant mass of the system, α e and α s are electromagnetic and strong couplings, respectively, m Q is the quark mass.

We use the following formulas for the widths of resonances:

$$ \everymath{\displaystyle} \begin{array}{@{}l} \varGamma_{H\to gg}= \frac{M_H^3}{4\pi} \frac{G_F}{\sqrt{2}} \biggl( \frac{\alpha_s(M_H/2)}{2\pi} \biggr)^2 \biggl\vert f_H \biggl( \frac{M_H^2}{4m_t^2} \biggr) \biggr\vert^2K_H, \\[4mm] K_H\simeq1+\frac{\alpha_s(M_H/2)}{\pi} \biggl( \pi^2+ \frac{11}{2} \biggr)+0.2, \\[4mm] f_H(x)=\frac{1}{x} \biggl( 1+\frac{1}{2} \biggl( 1-\frac{1}{x} \biggr) [ L_+ +L_- ] \biggr), \\[4mm] L_{\pm}=Li_2 \biggl( \frac{2}{1\pm\sqrt{1-\frac {1}{x}}\pm\imath0} \biggr), \end{array} $$
(A.4)
(A.5)
(A.6)

where G F is the Fermi constant and m t is the top quark mass.

Appendix B

Here we present the calculation of the “soft survival probability” using (65) in the simple case, when the amplitude has the form

$$ \mathcal{M}\sim\bar{\mathcal{M}}=\mathrm {e}^{-B(\boldsymbol {\varDelta}_1^2+\boldsymbol {\varDelta}_2^2)}. $$
(B.1)

When y=0 we can take the above form of the amplitude. In this case

$$ \everymath{\displaystyle} \begin{array}{@{}l} \int\vert\bar{\mathcal{M}}\vert \,d^2\boldsymbol { \varDelta}\,d^2\boldsymbol {\delta}=\frac{\pi^2}{16B^2}, \\[4mm] \boldsymbol {\varDelta}=\frac{\boldsymbol {\varDelta}_2+\boldsymbol {\varDelta}_1}{2}, \qquad \boldsymbol {\delta }=\frac{\boldsymbol {\varDelta}_2-\boldsymbol {\varDelta}_1}{2}, \end{array} $$
(B.2)

and

(B.3)

where κ=q+q′+δ, b=|b|, b′=|b′|,

(B.4)

where the function h is presented in (77). Finally we have

$$ \int\bigl\vert\bar{\mathcal{M}}^U\bigr\vert \,d^2\boldsymbol {\varDelta}\,d^2\boldsymbol {\delta}= \frac{\pi^2}{16B^2} \frac{1}{4B}\int _0^{\infty}\bigl\vert h(\delta) \bigr \vert^2 \,d\delta^2, $$
(B.5)

and

$$ \bigl\langle S^2\bigr\rangle \simeq \bigl\langle S^2\bigr\rangle _{y=0}=\frac{\int\vert\bar{\mathcal{M}}^U\vert \,d^2\boldsymbol {\varDelta}\,d^2\boldsymbol {\delta}}{\int\vert\bar{\mathcal {M}}\vert\,d^2\boldsymbol {\varDelta}\,d^2\boldsymbol {\delta}}, $$
(B.6)

which leads to the expression (76). The accuracy of this approximation is about 1 %.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryutin, R.A. Exclusive double diffractive events: general framework and prospects. Eur. Phys. J. C 73, 2443 (2013). https://doi.org/10.1140/epjc/s10052-013-2443-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2443-5

Keywords

Navigation