Skip to main content
Log in

Hard four-jet production in pA collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In a suitably chosen back-to-back kinematics, four-jet production in hadronic collisions is known to be dominated by contributions from two independent partonic scattering processes, thus giving experimental access to the structure of generalized two-parton distributions (2GPDs). Here, we show that a combined measurement of the double hard four-jet cross section in proton–proton and proton–nucleus collisions will allow one to disentangle different sources of two-parton correlations in the proton that cannot be disentangled with 4-jet measurements in proton–proton collisions alone. To this end, we analyze in detail the structure of 2GPDs in the nucleus (A), we calculate in the independent nucleon approximation all contributions to the double hard four-jet cross section in pA, and we determine corrections arising from the nuclear dependence of single parton distribution functions. We then outline an experimental strategy for determining the longitudinal two-parton correlations in the proton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Interference effects were also considered recently in [38]. In contrast to our work, however, the main focus in [38] was on the case of scattering of protons off the lightest nuclei (A=2,3). The A-dependence for large A, and the effects of QCD evolution suppressing interference discussed here were not addressed in [38].

References

  1. B. Blok, Y. Dokshitzer, L. Frankfurt, M. Strikman, Phys. Rev. D 83, 071501 (2011). arXiv:1009.2714 [hep-ph]

    Article  ADS  Google Scholar 

  2. B. Blok, Y. Dokshitzer, L. Frankfurt, M. Strikman, Eur. Phys. J. C 72, 1963 (2012). arXiv:1106.5533 [hep-ph]

    Article  ADS  Google Scholar 

  3. B. Blok, Y. Dokshitzer, L. Frankfurt, M. Strikman. arXiv:1206.5594 [hep-ph]

  4. F. Abe et al. (CDF Collaboration), Phys. Rev. D 56, 3811 (1997)

    Article  ADS  Google Scholar 

  5. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 81, 052012 (2010). arXiv:0912.5104 [hep-ex]

    Article  ADS  Google Scholar 

  6. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 83, 052008 (2011). arXiv:1101.1509 [hep-ex]

    Article  ADS  Google Scholar 

  7. H. Abramowicz, Talk at MPI-2011 meeting, Hamburg, November 2011

  8. L. Frankfurt, M. Strikman, C. Weiss, Phys. Rev. D 69, 114010 (2004). arXiv:hep-ph/0311231

    Article  ADS  Google Scholar 

  9. L. Frankfurt, M. Strikman, C. Weiss, Annu. Rev. Nucl. Part. Sci. 55, 403 (2005). arXiv:hep-ph/0507286

    Article  ADS  Google Scholar 

  10. A. Del Fabbro, D. Treleani, Phys. Rev. D 61, 077502 (2000). arXiv:hep-ph/9911358

    Article  ADS  Google Scholar 

  11. A. Del Fabbro, D. Treleani, Phys. Rev. D 63, 057901 (2001). arXiv:hep-ph/0005273

    Article  ADS  Google Scholar 

  12. A. Accardi, D. Treleani, Phys. Rev. D 63, 116002 (2001). arXiv:hep-ph/0009234

    Article  ADS  Google Scholar 

  13. S. Domdey, H.J. Pirner, U.A. Wiedemann, Eur. Phys. J. C 65, 153 (2010). arXiv:0906.4335 [hep-ph]

    Article  ADS  Google Scholar 

  14. L. Frankfurt, M. Strikman, D. Treleani, C. Weiss, Phys. Rev. Lett. 101, 202003 (2008). arXiv:0808.0182 [hep-ph]

    Article  ADS  Google Scholar 

  15. T.C. Rogers, A.M. Stasto, M.I. Strikman, Phys. Rev. D 77, 114009 (2008). arXiv:0801.0303 [hep-ph]

    Article  ADS  Google Scholar 

  16. T. Sjostrand, P.Z. Skands, Eur. Phys. J. C 39, 129 (2005). For a recent summary see arXiv:hep-ph/0408302

    Article  ADS  Google Scholar 

  17. M. Bahr et al., Eur. Phys. J. C 58, 639 (2008). For a recent summary see arXiv:0803.0883 [hep-ph]

    Article  ADS  Google Scholar 

  18. C. Flensburg, G. Gustafson, L. Lonnblad, A. Ster. arXiv:1103.4320 [hep-ph]

  19. M. Diehl, in PoS (DIS 2010) (2010), p. 223. arXiv:1007.5477 [hep-ph]

    Google Scholar 

  20. M. Diehl, A. Schafer, Phys. Lett. B 698, 389 (2011). arXiv:1102.3081 [hep-ph]

    Article  ADS  Google Scholar 

  21. M. Diehl, A. Schafer, J. High Energy Phys. 1203, 089 (2012). arXiv:1111.0910 [hep-ph]

    Article  ADS  Google Scholar 

  22. E.L. Berger, C.B. Jackson, G. Shaughnessy, Phys. Rev. D 81, 014014 (2010). arXiv:0911.5348 [hep-ph]

    Article  ADS  Google Scholar 

  23. E. Maina, J. High Energy Phys. 1101, 061 (2011). arXiv:1010.5674 [hep-ph]

    Article  ADS  Google Scholar 

  24. E. Maina, J. High Energy Phys. 0909, 081 (2009). arXiv:0909.1586 [hep-ph]

    Article  ADS  Google Scholar 

  25. V.P. Shelest, A.M. Snigirev, G.M. Zinovev, Phys. Lett. B 113, 325 (1982)

    Article  ADS  Google Scholar 

  26. J.R. Gaunt, W.J. Stirling, J. High Energy Phys. 1003, 005 (2010). arXiv:0910.4347 [hep-ph]

    Article  ADS  Google Scholar 

  27. J.R. Gaunt, C.H. Kom, A. Kulesza, W.J. Stirling, Eur. Phys. J. C 69, 53 (2010). arXiv:1003.3953 [hep-ph]

    Article  ADS  Google Scholar 

  28. J.R. Gaunt, W.J. Stirling, J.R. Gaunt, W.J. Stirling, J. High Energy Phys. 1106, 048 (2011). arXiv:1103.1888 [hep-ph]

    Article  ADS  Google Scholar 

  29. M.G. Ryskin, A.M. Snigirev, Phys. Rev. D 83, 114047 (2011). arXiv:1103.3495 [hep-ph]

    Article  ADS  Google Scholar 

  30. M.G. Ryskin, A.M. Snigirev, Double parton scattering in double logarithm approximation of perturbative QCD. arXiv:1203.2330 [hep-ph]

  31. A.V. Manohar, W.J. Waalewijn, Phys. Rev. D 85, 114009 (2012). arXiv:1202.3794 [hep-ph]

    Article  ADS  Google Scholar 

  32. A.V. Manohar, W.J. Waalewijn, Phys. Lett. B 713, 196 (2012). arXiv:1202.5034 [hep-ph]

    Article  ADS  Google Scholar 

  33. P. Bartalini, L. Fano, arXiv:1103.6201 [hep-ex]

  34. N. Paver, D. Treleani, Z. Phys. C 28, 187 (1985)

    Article  ADS  Google Scholar 

  35. M. Mekhfi, Phys. Rev. D 32, 2371 (1985)

    Article  ADS  Google Scholar 

  36. M. Strikman, D. Treleani, Phys. Rev. Lett. 88, 031801 (2002). hep-ph/0111468

    Article  ADS  Google Scholar 

  37. M. Strikman, W. Vogelsang, Phys. Rev. D 83, 034029 (2011). arXiv:1009.6123 [hep-ph]

    Article  ADS  Google Scholar 

  38. D. Treleani, G. Calucci, Phys. Rev. D 86, 036003 (2012). arXiv:1204.6403 [hep-ph]

    Article  ADS  Google Scholar 

  39. L. Frankfurt, M. Strikman, Int. J. Mod. Phys. E 21, 1230002 (2012). arXiv:1203.5278 [hep-ph]

    Article  ADS  Google Scholar 

  40. L.L. Frankfurt, M.I. Strikman, Phys. Rep. 76, 215 (1981)

    Article  ADS  Google Scholar 

  41. L.L. Frankfurt, M.I. Strikman, Phys. Rep. 160, 235 (1988)

    Article  ADS  Google Scholar 

  42. V.N. Gribov, Sov. Phys. JETP 29, 483 (1969). [Zh. Eksp. Teor. Fiz. 56, 892 (1969)]

    ADS  Google Scholar 

  43. M. Strikman, in Proceedings 1st International Workshop on Multiple Partonic Conference: C08-10-27.4 (2010), pp. 309–316. Published by Verlag Deutsches Elektronen Synchrotron

    Google Scholar 

  44. L. Frankfurt, M. Strikman, Phys. Rev. D 66, 031502 (2002). hep-ph/0205223

    Article  ADS  Google Scholar 

  45. L. Frankfurt, M. Strikman, CERN-2004-009-A, HIP-2003-40-TH. hep-ph/0210088

  46. L. Frankfurt, V. Guzey, M. Strikman, Phys. Rep. 512, 255 (2012). arXiv:1106.2091 [hep-ph]

    Article  ADS  Google Scholar 

  47. I. Helenius, K.J. Eskola, H. Honkanen, C.A. Salgado, J. High Energy Phys. 1207, 073 (2012). arXiv:1205.5359 [hep-ph]

    Article  ADS  Google Scholar 

  48. K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61 (1999). hep-ph/9807297

    ADS  Google Scholar 

  49. K.J. Eskola, H. Paukkunen, C.A. Salgado, J. High Energy Phys. 0904, 065 (2009). arXiv:0902.4154 [hep-ph]

    Article  ADS  Google Scholar 

  50. M. Hirai, S. Kumano, T.-H. Nagai, Phys. Rev. C 76, 065207 (2007). arXiv:0709.3038 [hep-ph]

    Article  ADS  Google Scholar 

  51. D. de Florian, R. Sassot, Phys. Rev. D 69, 074028 (2004). hep-ph/0311227

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Leonid Frankfurt, Vadim Guzey, and Daniele Treliani for useful discussions. The research of MS was partially supported by grant from the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Wiedemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blok, B., Strikman, M. & Wiedemann, U.A. Hard four-jet production in pA collisions. Eur. Phys. J. C 73, 2433 (2013). https://doi.org/10.1140/epjc/s10052-013-2433-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2433-7

Keywords

Navigation