Skip to main content
Log in

A new resummation scheme in scalar field theories

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A new resummation scheme in scalar field theories is proposed by combining parquet resummation techniques and flow equations, which is characterized by a hierarchy structure of the Bethe–Salpeter (BS) equations. The new resummation scheme greatly improves on the approximations for the BS kernel. Resummation of the BS kernel in the t and u channels to infinite order is equivalent to truncate the effective action to infinite order. Our approximation approaches ensure that the theory can be renormalized, which is very important for numerical calculations. Two-point function can also be obtained from the four-point one through flow evolution equations resulting from the functional renormalization group. BS equations of different hierarchies and the flow evolution equation for the propagator constitute a closed self-consistent system, which can be solved completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N.E. Bickers, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 62, 961 (1989)

    Article  ADS  Google Scholar 

  2. N.E. Bickers, D.J. Scalapino, Ann. Phys. 193, 206 (1989)

    Article  ADS  Google Scholar 

  3. N.E. Bickers, S.R. White, Phys. Rev. B 43, 8044 (1991)

    Article  ADS  Google Scholar 

  4. P. Maris, C.D. Roberts, Phys. Rev. C 56, 3369 (1997). arXiv:nucl-th/9708029

    Article  ADS  Google Scholar 

  5. P. Maris, C.D. Roberts, P.C. Tandy, Phys. Lett. B 420, 267 (1998). arXiv:nucl-th/9707003

    Article  ADS  Google Scholar 

  6. A. Bender, C.D. Roberts, L. Von Smekal, Phys. Lett. B 380, 7 (1996). arXiv:nucl-th/9602012

    Article  ADS  Google Scholar 

  7. P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003). arXiv:nucl-th/0301049

    Article  ADS  Google Scholar 

  8. L. Chang, C.D. Roberts, Phys. Rev. Lett. 103, 081601 (2009). arXiv:0903.5461 [nucl-th]

    Article  MathSciNet  ADS  Google Scholar 

  9. H. van Hees, J. Knoll, Phys. Rev. D 65, 025010 (2002). arXiv:hep-ph/0107200

    Article  ADS  Google Scholar 

  10. H. van Hees, J. Knoll, Phys. Rev. D 65, 105005 (2002). arXiv:hep-ph/0111193

    Article  ADS  Google Scholar 

  11. H. van Hees, J. Knoll, Phys. Rev. D 66, 025028 (2002). arXiv:hep-ph/0203008

    Article  ADS  Google Scholar 

  12. J.-P. Blaizot, E. Iancu, U. Reinosa, Nucl. Phys. A 736, 149 (2004). arXiv:hep-ph/0312085

    Article  ADS  Google Scholar 

  13. J. Berges, Sz. Borsányi, U. Reinosa, J. Serreau, Ann. Phys. 320, 344 (2005). arXiv:hep-ph/0503240

    Article  ADS  MATH  Google Scholar 

  14. G. Aarts, J.M. Martínez Resco, J. High Energy Phys. 02, 061 (2004). arXiv:hep-ph/0402192

    Article  ADS  Google Scholar 

  15. J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)

    Article  ADS  MATH  Google Scholar 

  16. J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. T.D. Lee, C.N. Yang, Phys. Rev. 117, 22 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  18. C. De Dominicis, P.C. Martin, J. Math. Phys. 5, 14 (1964)

    Article  ADS  Google Scholar 

  19. C. De Dominicis, P.C. Martin, J. Math. Phys. 5, 31 (1964)

    Article  ADS  Google Scholar 

  20. G. Baym, L. Kadanoff, Phys. Rev. 127, 22 (1962)

    Article  Google Scholar 

  21. G. Baym, Phys. Rev. 127, 1391 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J.P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. Lett. 83, 2906 (1999). arXiv:hep-ph/9906340

    Article  ADS  Google Scholar 

  23. J.P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. D 63, 065003 (2001). arXiv:hep-ph/0005003

    Article  ADS  Google Scholar 

  24. J. Berges, Sz. Borsányi, U. Reinosa, J. Serreau, Phys. Rev. D 71, 105004 (2005). arXiv:hep-ph/0409123

    Article  ADS  Google Scholar 

  25. J. Berges, J. Cox, Phys. Lett. B 517, 369 (2001). arXiv:hep-ph/0006160

    Article  ADS  MATH  Google Scholar 

  26. J. Berges, Nucl. Phys. A 699, 847 (2002). arXiv:hep-ph/0105311

    Article  ADS  MATH  Google Scholar 

  27. G. Aarts, J. Berges, Phys. Rev. Lett. 88, 041603 (2002). arXiv:hep-ph/0107129

    Article  ADS  Google Scholar 

  28. G. Aarts, D. Ahrensmeier, R. Baier, J. Berges, J. Serreau, Phys. Rev. D 66, 045008 (2002). arXiv:hep-ph/0201308

    Article  ADS  Google Scholar 

  29. U. Reinosa, J. Serreau, Ann. Phys. 325, 969 (2010). arXiv:0906.2881

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. C. Wetterich, Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  31. J.P. Blaizot, J.M. Pawlowski, U. Reinosa, Phys. Lett. B 696, 523 (2011). arXiv:1009.6048 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  32. B. Roulet, J. Gavoret, P. Nozières, Phys. Rev. 178, 1072 (1969)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am indebted to M.E. Carrington for useful discussions. This work was supported by the National Natural Science Foundation of China under Contracts No. 11005138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-jie Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Wj. A new resummation scheme in scalar field theories. Eur. Phys. J. C 73, 2411 (2013). https://doi.org/10.1140/epjc/s10052-013-2411-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2411-0

Keywords

Navigation