Skip to main content
Log in

Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Through a detailed study of the mean-field approximation, the Gaussian approximation, the perturbation expansion, and the field-theoretic renormalization-group analysis of a φ 3 theory, we show that the instability fixed points of the theory, together with their associated instability exponents, are quite probably relevant to the scaling and universality behavior exhibited by the first-order phase transitions in a field-driven scalar ϕ 4 model, below its critical temperature and near the instability points. Finitetime scaling and leading corrections to the scaling are considered. We also show that the instability exponents of the first-order phase transitions are equivalent to those of the Yang–Lee edge singularity, and employ the latter to improve our estimates of the former. The outcomes agree well with existing numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. P. Ehrenfest, Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach dem entsprechenden Singularitäten des thermodynamischen Potentiales, Comm. Kamerlingh Onnes Lab., University of Leiden, Suppl. 75b (1933) [Proc. Acad. Sci. Amsterdam 36, 153 (1933)]

    MATH  Google Scholar 

  2. M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30(2), 615 (1967)

    Article  ADS  Google Scholar 

  3. T. Andrews, The Bakerian lecture: On the continuity of the gaseous and liquid states of matter, Philos. Trans. R. Soc. Lond. 159(0), 575 (1869)

    Article  Google Scholar 

  4. K. G. Wilson, Renormalization group and critical phenomena (I), Phys. Rev. B 4(9), 3174 (1971)

    Article  ADS  MATH  Google Scholar 

  5. K. G. Wilson, Renormalization group and critical phenomena (II): Phase-space cell analysis of critical behavior, Phys. Rev. B 4(9), 3184 (1971)

    Article  ADS  MATH  Google Scholar 

  6. K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. C 12(2), 75 (1974)

    Article  ADS  Google Scholar 

  7. M. E. Fisher, The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46(4), 597 (1974)

    Article  ADS  Google Scholar 

  8. H. E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys. 71(2), S358 (1999)

    Article  Google Scholar 

  9. M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Critical phenomena in microgravity: Past, present, and future, Rev. Mod. Phys. 79(1), 1 (2007)

    Article  ADS  Google Scholar 

  10. J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983

    Book  Google Scholar 

  11. J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983

  12. K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)

    Article  ADS  Google Scholar 

  13. P. G. Debenedetti, Metastable Liquids, Princeton: Princeton University, 1996

    Google Scholar 

  14. J. van der Waals, On the continuity of the gaseous and liquid state, Thesis, Leiden, 1873 (unpublished)

    MATH  Google Scholar 

  15. J. C. Maxwell, Scientific Papers, New York: Dover, 1965, p. 425

    Google Scholar 

  16. J. W. Gibbs, The Collective Works of J. Willard Gibbs, Vol. 1, New York: Longman, 1931

    Google Scholar 

  17. J. D. Gunton, Homogeneous nucleation, J. Stat. Phys. 95(5/6), 903 (1999)

    Article  ADS  MATH  Google Scholar 

  18. D. W. Oxtoby, Nucleation of first-order phase transitions, Acc. Chem. Res. 31(2), 91 (1998)

    Article  Google Scholar 

  19. R. B. Sear, Nucleation: Theory and applications to protein solutions and colloidal suspensions, J. Phys.: Condens. Matter 19, 033101 (2007)

    ADS  Google Scholar 

  20. K. Binder and P. Fratzl, in: Phase Transformations in Materials, ed. G. Kostorz, Weinheim: Wiley, 2001

  21. J. S. Langer, M. Baron, and H. D. Miller, New computational method in the theory of spinodal decomposition, Phys. Rev. A 11(4), 1417 (1975)

    Article  ADS  Google Scholar 

  22. K. Binder, “Clusters” in the Ising model, metastable states and essential singularity, Ann. Phys. 98(2), 390 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Binder and D. Stauffer, Statistical theory of nucleation, condensation and coagulation, Adv. Phys. 25(4), 343 (1976)

    Article  Google Scholar 

  24. F. Zhong, Instability points and spinodal points, 2010 (unpublished)

    Google Scholar 

  25. B. Nienhuis and M. Nauenberg, First-order phase transitions in renormalization-group theory, Phys. Rev. Lett. 35(8), 477 (1975)

    Article  ADS  Google Scholar 

  26. M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems, Phys. Rev. B 26(5), 2507 (1982)

    Article  ADS  Google Scholar 

  27. A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43, 357 (1994), reprinted as Adv. Phys. 51, 481 (2002), and references therein

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Marro, J. L. Lebowitz, and M. H. Kalos, Computer simulation of the time evolution of a quenched model alloy in the nucleation region, Phys. Rev. Lett. 43(4), 282 (1979)

    Article  ADS  Google Scholar 

  29. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)

    Article  ADS  Google Scholar 

  30. J. X. Zhang and X. J. Li, A new method for interface dynamic investigation in solid state phase transformations, Acta Sci. Nat. Uni. Sun. 2, 45 (1985)

    Google Scholar 

  31. M. Rao, H. R. Krishnamurthy, and R. Pandit, Hysteresis in model spin systems, J. Phys.: Condens. Matter 1(45), 9061 (1989)

    ADS  Google Scholar 

  32. M. Rao, H. R. Krishnamurthy, and R. Pandit, Magnetic hysteresis in two model spin systems, Phys. Rev. B 42(1), 856 (1990)

    Article  ADS  Google Scholar 

  33. F. Zhong, J. X. Zhang, and G. G. Siu, Dynamic scaling of hysteresis in a linearly driven system, J. Phys.: Condens. Matter 6(38), 7785 (1994)

    ADS  Google Scholar 

  34. F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)

    Article  Google Scholar 

  35. F. Zhong, J. X. Zhang, and X. Liu, Scaling of hysteresis in the Ising model and cell-dynamical systems in a linearly varying external field, Phys. Rev. E 52(2), 1399 (1995)

    Article  ADS  Google Scholar 

  36. J. X. Zhang, P. C. W. Fung, and W. G. Zeng, Dissipation function of the first-order phase transformation in solids via internal-friction measurements, Phys. Rev. B 52(1), 268 (1995), and references therein

    Article  ADS  Google Scholar 

  37. J. X. Zhang, Z. H. Yang, and P. C. W. Fung, Dissipation function of the first-order phase transformation in VO2 ceramics by internal-friction measurements, Phys. Rev. B 52(1), 278 (1995)

    Article  ADS  Google Scholar 

  38. J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in first-order phase transition of solids, Solid State Commun. 97(10), 847 (1996)

    Article  ADS  Google Scholar 

  39. K. Chakrabarti and M. Acharyya, Dynamic transitions and hysteresis, Rev. Mod. Phys. 71(3), 847 (1999)

    Article  ADS  Google Scholar 

  40. F. Zhong and J. X. Zhang, Renormalization group theory of hysteresis, Phys. Rev. Lett. 75(10), 2027 (1995)

    Article  ADS  Google Scholar 

  41. F. Zhong, Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model, Phys. Rev. B 66, 060401(R) (2002)

    Article  ADS  Google Scholar 

  42. F. Zhong and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)

    Article  ADS  Google Scholar 

  43. M. E. Fisher, Yang–Lee edge singularity and ϕ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)

    Article  ADS  Google Scholar 

  44. J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)

    Article  ADS  Google Scholar 

  45. O. Penrose and J. L. Lebowitz, Rigorous treatment of metastable states in the van der Waals–Maxwell theory, J. Stat. Phys. 3(2), 211 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. J. S. Langer, Metastable states, Physica 73(1), 61 (1974)

    Article  ADS  Google Scholar 

  47. K. Binder, Double-well thermodynamic potentials and spinodal curves: How real are they? Philos. Mag. Lett. 87(11), 799 (2007)

    Article  ADS  Google Scholar 

  48. J. D. Gunton and M. C. Yalabik, Renormalizationgroup analysis of the mean-field theory of metastability: A spinodal fixed point, Phys. Rev. B 18(11), 6199 (1978)

    Article  ADS  Google Scholar 

  49. W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)

    Article  ADS  Google Scholar 

  50. C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)

    Article  ADS  Google Scholar 

  51. H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, ed. C. P. Enz, Berlin: Springer, 1979

  52. H. K. Janssen, in: From Phase Transition to Chaos, eds. G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992, and references therein

  53. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd Ed., Oxford: Clarendon, 1996

    MATH  Google Scholar 

  54. A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004

    Book  MATH  Google Scholar 

  55. U. C. Täuber, Critical Dynamics, http://www.phys.vt.edu/tauber/utaeuber.html

  56. R. Folk and G. Moser, Critical dynamics: A fieldtheoretical approach, J. Phys. A 39(24), R207 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)

    Article  ADS  Google Scholar 

  58. R. Bausch, J. K. Janssen, and H. Wagner, Renormalized field theory of critical dynamics, Z. Phys. B 24(1), 113 (1976)

    Article  ADS  Google Scholar 

  59. U. Deker and F. Haake, Fluctuation-dissipation theorems for classical processes, Phys. Rev. A 11(6), 2043 (1975)

    Article  ADS  Google Scholar 

  60. C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)

    Article  ADS  Google Scholar 

  61. Y. Saito, Pseudocritical phenomena near the spinodal point, Prog. Theor. Phys. 59(2), 375 (1978)

    Article  ADS  Google Scholar 

  62. D. J. Amit, Renormalization of the Potts model, J. Phys. A 9(9), 1441 (1976)

    Article  ADS  Google Scholar 

  63. A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Renormalization-group approach to percolation problems, Phys. Rev. Lett. 35(6), 327 (1975)

    Article  ADS  Google Scholar 

  64. S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)

    Article  ADS  Google Scholar 

  65. F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in: Applications of Monte Carlo Method in Science and Engineering, ed. S. Mordechai, Rijeka: Intech, 2011. Available at http://www.intechopen.com/articles/show/title/finitetime-scaling-and-its-applications-to-continuous-phasetransitions

    Google Scholar 

  66. F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)

    Article  ADS  Google Scholar 

  67. P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)

    Article  ADS  Google Scholar 

  68. V. L. Ginzburg, Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectric materials, Sov. Phys. Solid State 2, 1824 (1960)

    MathSciNet  Google Scholar 

  69. D. J. Amit, The Ginzburg criterion-rationalized, J. Phys. C: Solid State Phys. 7, 3369 (1974)

    Article  ADS  Google Scholar 

  70. K. Binder, Nucleation barriers, spinodals, and the Ginzburg criterion, Phys. Rev. A 29(1), 341 (1984)

    Article  Google Scholar 

  71. E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, in: Phase Transitions and Critical Phenomena, eds. C. Domb and M. S. Green, Vol. 6, New York: Academic, 1976

  72. D. J. Amit and V. Martin-Mayer, Field Theory, the Renormalization Group, and Critical Phenomena, 3rd Ed., Singapore: World Scientific, 2005

    Book  Google Scholar 

  73. K. Symanzik, Massless 4 theory in 4-“dimensions theory in 4-” dimensions, Lett. Nuovo Cimento 8(13), 771 (1973)

    Article  Google Scholar 

  74. G. Parisi, Field-theoretic approach to second-order phase transitions in two- and three-dimensional systems, J. Stat. Phys. 23(1), 49 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  75. M. C. Bergère and F. David, Nonanalyticity of the perturbative expansion for super-renormalizable massless field theories, Ann. Phys. 142(2), 416 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  76. C. Bagnuls and C. Bervillier, Nonasymptotic critical behavior from field theory at d = 3: The disordered-phase case, Phys. Rev. B 32(11), 7209 (1985)

    Article  ADS  Google Scholar 

  77. C. Bagnuls, C. Bervillier, D. I. Meiron, and B. G. Nickel, Nonasymptotic critical behavior from field theory at d = 3 (II): The ordered-phase case, Phys. Rev. B 35(7), 3585 (1987)

    Article  ADS  Google Scholar 

  78. R. Schloms and V. Dohm, Minimal renormalization without ε-expansion: Critical behavior in three dimensions, Nucl. Phys. B 328(3), 639 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  79. G.’t Hooft and H. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  80. S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. H. K. Janssen, B. Schaub, and B. Schmittmann, New universal short-time scaling behaviour of critical relaxation processes, Z. Phys. B 73(4), 539 (1989)

    Article  ADS  Google Scholar 

  82. F. W. Wegner, Corrections to scaling laws, Phys. Rev. B 5(11), 4529 (1972)

    Article  ADS  Google Scholar 

  83. P. G. de Gennes, Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A 30(8), 454 (1969)

    Article  ADS  Google Scholar 

  84. R. G. Priest and T. C. Lubensky, Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 13(9), 4159 (1976)

    Article  ADS  Google Scholar 

  85. R. B. Potts and C. Domb, Some generalized orderdisorder transformations, Proc. Camb. Philos. Soc. 48(01), 106 (1952)

    Article  ADS  Google Scholar 

  86. R. K. P. Zia and D. J. Wallace, Critical behavior of the continuous n-component Potts model, J. Phys. A 8(9), 1495 (1975)

    Article  ADS  Google Scholar 

  87. C. M. Fortuin and P. W. Kasteleyn, On the randomcluster model, Physica 57(4), 536 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  88. S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5(5), 965 (1975)

    Article  ADS  Google Scholar 

  89. A. B. Harris, T. C. Lubensky, and J.-H. Chen, Critical properties of spin-glasses, Phys. Rev. Lett. 36, 415 (1976)

    Article  ADS  Google Scholar 

  90. G. Ódor, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76(3), 663 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. G. Ódor, Universality in Nonequilibrium Lattice Systems, Singapore: World Scientific, 2008

    Book  MATH  Google Scholar 

  92. H. K. Janssen and U. C. Täuber, The field theory approach to percolation processes, Ann. Phys. 315(1), 147 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. H. D. I. Abarbanel, J. D. Bronzan, R. L. Sugar, and A. R. White, Reggeon field theory: Formulation and use, Phys. Rep. 21(3), 119 (1975)

    Article  ADS  Google Scholar 

  94. M. Moshe, Recent developments in Reggeon field theory, Phys. Rep. 37(3), 255 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  95. J. L. Cardy and R. L. Sugar, Directed percolation and Reggeon field theory, J. Phys. A 13(12), L423 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  96. G. Parisi and N. Sourlas, Critical behavior of branched polymers and the Lee–Yang edge singularity, Phys. Rev. Lett. 46(14), 871 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. T. C. Lubensky and A. J. McKane, Anderson localization, branched polymers and the Yang–Lee edge singularity, J. Phys. Lett. 42(14), 331 (1981)

    Article  Google Scholar 

  98. J. L. Cardy, Directed lattice animals and the Lee–Yang edge singularity, J. Phys. A 15(11), L593 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  99. A. J. McKane, D. J. Wallace, and R. K. P. Zia, Models for strong interactions in 6-ϵ dimensions, Phys. Lett. B 65(2), 171 (1976)

    Article  ADS  Google Scholar 

  100. O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ϵ3 for ϕ3 models of critical phenomena in 6-ϵ dimensions, J. Phys. Math. Gen. 13(7), L247 (1980)

    Article  Google Scholar 

  101. O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)

    Article  ADS  Google Scholar 

  102. A. J. McKane, Vacuum instability in scalar field theories, Nucl. Phys. B 152(1), 166 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  103. J. E. Kirkham and D. J. Wallace, Comments on the field-theoretic formulation of the Yang–Lee edge singularity, J. Phys. A 12(2), L47 (1979)

    Article  ADS  Google Scholar 

  104. A. Houghton, J. S. Reeve, and D. J. Wallace, Highorder behavior in φ3 field theories and the percolation problem, Phys. Rev. B 17(7), 2956 (1978)

    Article  ADS  Google Scholar 

  105. D. J. Amit, D. J. Wallace, and R. K. P. Zia, Universality in the percolation problem — Anomalous dimensions of φ4 operators, Phys. Rev. B 15(10), 4657 (1977)

    Article  ADS  Google Scholar 

  106. D. J. Elderfield and A. J. McKane, Relevance of φ4 operators in the Edwards–Anderson model, Phys. Rev. B 18(7), 3730 (1978)

    Article  ADS  Google Scholar 

  107. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions (I): Theory of condensation, Phys. Rev. 87(3), 404 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions (II): Lattice gas and Ising model, Phys. Rev. 87(3), 410 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. P. J. Kortman and R. B. Griffiths, Density of zeros on the Lee–Yang circle for two Ising ferromagnets, Phys. Rev. Lett. 27(21), 1439 (1971)

    Article  ADS  Google Scholar 

  110. D. A. Kurtze and M. E. Fisher, Yang–Lee edge singularities at high temperatures, Phys. Rev. B 20(7), 2785 (1979)

    Article  ADS  Google Scholar 

  111. N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. B 41(1), 55 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  112. J. Reeve, A. J. Guttmann, and B. Keck, Critical behavior of φ3 field theories in three dimensions, Phys. Rev. B 26(7), 3923 (1982)

    Article  ADS  Google Scholar 

  113. L. H. Ryder, Quantum Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 2004

    Google Scholar 

  114. F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F. Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model. Front. Phys. 12, 126402 (2017). https://doi.org/10.1007/s11467-016-0632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0632-z

Keywords

Navigation