Skip to main content
Log in

Dark energy from conformal symmetry breaking

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The breakdown of conformal symmetry in a conformally invariant scalar-tensor gravitational model is revisited in the cosmological context. Although the old scenario of conformal symmetry breaking in cosmology containing a scalar field has already been used in many earlier works, it seems that no special attention has been paid for the investigation on the possible connection between the breakdown of conformal symmetry and the existence of dark energy. In this paper, it is shown that the old scenario of conformal symmetry breaking in cosmology, if properly interpreted, not only has a potential ability to describe the origin of dark energy as a symmetry breaking effect, but also may resolve the coincidence problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that one may reconstruct the radiation dominant era in the standard cosmology (broken phase of conformal symmetry with a constant scalar field ϕ) by the following choices:

    $$ \alpha=-4,\qquad \beta=0,\qquad \gamma=\frac{1}{2}. $$
    (28)
  2. In a thorough study of conformal symmetry breaking at early universe, one may think that even if the conformal symmetry would break down in the high energy stage of inflationary epoch via quantum conformal anomalies, it could be restored in the low energy stage of radiation dominant era by some possible mechanisms to make the energy-momentum tensor classically traceless. In this regard, the radiation dominant era represents the conformal symmetry as it should be.

References

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  3. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  4. S.W. Allen et al., Mon. Not. Roy. Astron. Soc. 353, 457 (2004)

    Article  ADS  Google Scholar 

  5. V. Shani, A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  6. S.M. Carroll, Living Rev. Rel. 4, 1 (2001)

    Google Scholar 

  7. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  10. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  11. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  12. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  13. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  14. S. Nojiri, S.D. Odintsov, Phys. Lett. B 562, 147 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. V.K. Onemli, R.P. Woodard, Phys. Rev. D 70, 107301 (2004)

    Article  ADS  Google Scholar 

  16. M.R. Setare, J. Sadeghi, A.R. Amani, Phys. Lett. B 666, 288 (2008)

    Article  ADS  Google Scholar 

  17. E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004)

    Article  ADS  Google Scholar 

  18. B. Feng, X.-L. Wang, X.-M. Zhang, Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  19. M.-Z. Li, B. Feng, X.-M. Zhang, JCAP 0512, 002 (2005)

    Article  ADS  Google Scholar 

  20. Y.-F. Cai, E.N. Saridakis, M.R. Setare, J.-Q. Xia, Phys. Rept. 493, 1 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  21. W. Zhao, Y. Zhang, Phys. Rev. D 73, 123509 (2006)

    Article  ADS  Google Scholar 

  22. M.R. Setare, E.N. Saridakis, Phys. Lett. B 668, 177 (2008)

    Article  ADS  Google Scholar 

  23. M.R. Setare, E.N. Saridakis, JCAP 0809, 026 (2008)

    Article  ADS  Google Scholar 

  24. G. ’t Hooft. arXiv:gr-qc/9310026

  25. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M. Li, Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  27. B. Hu, Y. Ling, Phys. Rev. D 73, 123510 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Li, Z.K. Guo, Y.Z. Zhang, Int. J. Mod. Phys. D 15, 869 (2006)

    Article  ADS  MATH  Google Scholar 

  29. M.R. Setare, Phys. Lett. B 642, 1 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. M.R. Setare, JCAP 0701, 023 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Capozziello, M. Francaviglia, Gen. Rel. Grav 40, 357 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys 4, 115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys 82, 451 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. S. Capozziello, M. De Laurentis, Invariance Principles and Extended Gravity: Theory and Probes (Nova Science Pub., New York, 2010)

    Google Scholar 

  35. A. De Felice, S. Tsujikawa, (2010). arXiv:1002.4928v1 [gr-qc]

  36. I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (Institute of Physics, Bristol, 1992)

    Google Scholar 

  37. M. Farhoudi, Gen. Rel. Grav. 38, 1261 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. T.P. Sotiriou, Class. Quantum Grav. 26, 152001 (2009)

    Article  ADS  Google Scholar 

  39. A.A. Grib, S.G. Mamayev, V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Lab., St. Petersburg, 1994)

    Google Scholar 

  40. J.D. Bekenstein, A. Meisel, Phys. Rev. D 26, 1313 (1980)

    Article  ADS  Google Scholar 

  41. S. Deser, Annals of Physics 59, 248 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  42. S.M. Carrol, Why is the Universe Accelerating. AIP Conf. Proc. 743, 16–32 (2005). arXiv:astro-ph/0310342

    Article  ADS  Google Scholar 

  43. I. Antoniadis, S.D. Odintsov, Phys. Lett. B 343, 76 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for the enlightening comments. This work has been supported by a grant/research fund number 217/D/5947 from Azarbaijan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Darabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darabi, F. Dark energy from conformal symmetry breaking. Eur. Phys. J. C 73, 2389 (2013). https://doi.org/10.1140/epjc/s10052-013-2389-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2389-7

Keywords

Navigation