Skip to main content
Log in

Light dark matter candidate in BL gauged radiative inverse seesaw

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study a radiative inverse seesaw model with local BL symmetry, in which we extend the neutrino mass structure that is generated through a kind of inverse seesaw framework to the more generic one than our previous work. We focus on the real part of bosonic particle as a dark matter and investigate the features in \(\mathcal{ O}\mbox {(1--80)}~\mbox{GeV}\) mass range, reported by the experiments such as CoGeNT and XENON (2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Since μ″/μμ″/μ′∼〈Φ〉/〈χ〉∼0.05, it is reasonable to neglect this term. In a supersymmetric model, however, this term automatically vanishes in appropriate assignments. We shall publish it elsewhere.

  2. With the non-diagonal structure of y ν , the LFV constraint can be satisfied under the condition that M η \(\mathcal{ O}\)(500) GeV for y ν ≤0.1. In this case, however, our DM (η R ) mass cannot be of \(\mathcal{ O}\mbox{(1--10)~GeV}\) because the mass difference between m R and M η is proportional to v.

  3. The Higgs analysis in the typical inverse seesaw model has been done in the Ref. [13, 14], in which the detectability of the recent experiments ATLAS and CMS is discussed.

  4. If one would like to consider the constraint of the anti-proton no excess reported by PAMELA, the existence of s-wave is not favor in the NFW profile [16, 17]. But one can easily escape such a constraint to adopt another profile.

References

  1. K.G. Begeman, A.H. Broeils, R.H. Sanders, Mon. Not. R. Astron. Soc. 249, 523 (1991)

    ADS  Google Scholar 

  2. R. Massey et al., Nature 445, 286 (2007). arXiv:astro-ph/0701594

    Article  ADS  Google Scholar 

  3. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO]

    Article  ADS  Google Scholar 

  4. E. Aprile et al. (XENON100 Collaboration), arXiv:1207.5988 [astro-ph.CO]

  5. G. Angloher, M. Bauer, I. Bavykina, A. Bento, C. Bucci, C. Ciemniak, G. Deuter, F. von Feilitzsch et al., arXiv:1109.0702 [astro-ph.CO]

  6. C.E. Aalseth, et al. (CoGeNT collaboration), Phys. Rev. Lett. 106, 131301 (2011). arXiv:1002.4703 [astro-ph.CO]

    Article  ADS  Google Scholar 

  7. R. Bernabei et al., Eur. Phys. J. C 67, 39 (2010). arXiv:1002.1028 [astro-ph.GA]

    Article  ADS  Google Scholar 

  8. E. Ma, Phys. Rev. D 73, 077301 (2006). hep-ph/0601225

    Article  ADS  Google Scholar 

  9. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    Article  ADS  MATH  Google Scholar 

  10. H. Okada, T. Toma, Phys. Rev. D 86, 033011 (2012). arXiv:1207.0864 [hep-ph]

    Article  ADS  Google Scholar 

  11. M.E. Catano, R. Martinez, F. Ochoa, arXiv:1206.1966 [hep-ph]

  12. J. Adam et al. (MEG Collaboration), Phys. Rev. Lett. 107, 171801 (2011). arXiv:1107.5547 [hep-ex]

    Article  ADS  Google Scholar 

  13. P. Bandyopadhyay, E.J. Chun, H. Okada, J.-C. Park, arXiv:1209.4803 [hep-ph]

  14. I. Gogoladze, B. He, Q. Shafi, arXiv:1209.5984 [hep-ph]

  15. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2

  16. J. Lavalle, Phys. Rev. D 82, 081302 (2010). arXiv:1007.5253 [astro-ph.HE]

    Article  ADS  Google Scholar 

  17. H. Okada, T. Toma, Phys. Lett. B 713, 264 (2012). arXiv:1203.3116 [hep-ph]

    Article  ADS  Google Scholar 

  18. P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, Phys. Lett. B 718, 469 (2012). arXiv:1207.1347 [hep-ph]

    Article  ADS  Google Scholar 

  19. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  20. E. Aprile (XENON1T Collaboration), arXiv:1206.6288 [astro-ph.IM]

  21. S. Khalil, Phys. Rev. D 82, 077702 (2010). arXiv:1004.0013 [hep-ph]

    Article  ADS  Google Scholar 

  22. F. del Aguila, J. de Blas, M. Perez-Victoria, Phys. Rev. D 78, 013010 (2008). arXiv:0803.4008 [hep-ph]

    Article  ADS  Google Scholar 

  23. W. Abdallah, A. Awad, S. Khalil, H. Okada, Eur. Phys. J. C 72, 2108 (2012). arXiv:1105.1047 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H.O. thanks to Prof. Eung-Jin Chun, Dr. Priyotosh Bandyopadhyay, and Dr. Jong-Chul Park, for fruitful discussion. Y.K. thanks Korea Institute for Advanced Study for the travel support and local hospitality during some parts of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiyama, Y., Okada, H. & Toma, T. Light dark matter candidate in BL gauged radiative inverse seesaw. Eur. Phys. J. C 73, 2381 (2013). https://doi.org/10.1140/epjc/s10052-013-2381-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2381-2

Keywords

Navigation