Skip to main content
Log in

Improving the Drell–Yan probe of small x partons at the LHC via a k t cut

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We show that the observation of the Drell–Yan production of low-mass lepton-pairs (M≲20 GeV) at high rapidities (Y≳3) at the LHC can make a direct measurement of parton distribution functions (PDFs) in the low x region, x≲10−4. We describe a procedure that greatly reduces the sensitivity of the predictions to the choice of the factorization scale and, in particular, show how, by imposing a cutoff on the transverse momentum of the lepton-pair, the data are able to probe PDFs in the important low scale, low x domain. We include the effects of the Sudakov suppression factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Strictly speaking, z is the ratio of the light-cone momentum fraction carried by the ‘daughter’ quark to that carried by the ‘parent’ gluon, \(z=x^{+}_{q}/x^{+}_{g}\).

  2. We take the leading ln(1/x) form of the flux so as not to distort the structure of the double \(\alpha_{s}{\rm ln}(1/x){\rm ln}M^{2}\) resummation. We find a more flexible form of the flux, with an additional z δ factor, has a negligible effect on the value found for μ 0 for a reasonable δ<0.2.

  3. That is terms enhanced by the large value of ln(1/x).

  4. In order to account better for the x-dependence of the incoming parton densities we may include in the flux an additional factor z δ. However, integrating over such a flux factor with δ≲0.2 gives a negligible change in the resulting value of μ 0/M for the region of interest k 0M/2.

  5. It may be more collinear-safe to choose \(\mu ^{2}_{T}=M^{2}+k_{t}^{2}\). However, this is beyond the double log accuracy used in (22) and (23). Recall that the T factor is introduced to resum corrections enhanced by ln(M/k t ) for the case when k t M. Therefore we prefer to simplify the formula by including the remaining corrections in the usual higher \(\mathcal{O}(\alpha _{s})\) contributions \(C_{\rm rem}^{\rm NLO,NNLO}\), see (25).

  6. The imaginary part is cancelled between the amplitude A and its complex conjugate A .

References

  1. E.G. de Oliveira, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 72, 2069 (2012)

    Article  ADS  Google Scholar 

  2. D. Diakonov, M.G. Ryskin, A.G. Shuvaev, J. High Energy Phys. 1302, 069 (2013)

    Article  ADS  Google Scholar 

  3. LHCb Collaboration, CERN-LHCb-CONF-2012-013

  4. G. Grunberg, Phys. Lett. B 95, 70 (1980)

    Article  ADS  Google Scholar 

  5. G. Grunberg, Phys. Lett. B 110, 501 (1982)

    Article  Google Scholar 

  6. P.M. Stevenson, Phys. Lett. B 100, 61 (1981)

    Article  ADS  Google Scholar 

  7. P.M. Stevenson, Phys. Rev. D 23, 2916 (1981)

    Article  ADS  Google Scholar 

  8. C. Anastasiou, L.J. Dixon, K. Melnikov, F. Petriello, Phys. Rev. D 69, 094008 (2004)

    Article  ADS  Google Scholar 

  9. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  Google Scholar 

  10. Y.L. Dokshitzer, D. Diakonov, S.I. Troian, Phys. Rep. 58, 269 (1980)

    Article  ADS  Google Scholar 

  11. M.A. Kimber, A.D. Martin, M.G. Ryskin, Phys. Rev. D 63, 114027 (2001)

    Article  ADS  Google Scholar 

  12. A.D. Martin, M.G. Ryskin, G. Watt, Eur. Phys. J. C 66, 163 (2010)

    Article  ADS  Google Scholar 

  13. T. Coughlin, J. Forshaw, J. High Energy Phys. 1001, 121 (2010)

    Article  ADS  Google Scholar 

  14. G. Parisi, Phys. Lett. B 90, 295 (1980)

    Article  ADS  Google Scholar 

  15. G. Curci, M. Greco, Phys. Lett. B 92, 175 (1980)

    Article  ADS  Google Scholar 

  16. E.M. Levin, A.D. Martin, M.G. Ryskin, T. Teubner, Z. Phys. C 74, 671 (1997)

    Article  Google Scholar 

  17. H.-L. Lai et al. (CT10 Collaboration), Phys. Rev. D 82, 074024 (2010)

    Article  ADS  Google Scholar 

  18. S. Alekhin, J. Blümlein, S. Moch et al. (ABM11 Collaboration), Phys. Rev. D 86, 054009 (2012)

    Article  ADS  Google Scholar 

  19. R.D. Ball et al. (NNPDF2.3 Collaboration), Nucl. Phys. B 867, 244 (2013)

    Article  ADS  Google Scholar 

  20. (HERA1.5 Collaboration, H1 Collaboration, ZEUS Collaboration), H1prelim-10-142, ZEUS-prel-10-018

  21. M. Gluck, P. Jimenez-Delgado, E. Reya (GJR08 Collaboration), Eur. Phys. J. C 53, 355 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.G.dO. and M.G.R. thank the IPPP at the University of Durham for hospitality. This work was supported by the grant RFBR 11-02-00120-a and by the Federal Program of the Russian State RSGSS-4801.2012.2; and by FAPESP (Brazil) under contract 2012/05469-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, E.G., Martin, A.D. & Ryskin, M.G. Improving the Drell–Yan probe of small x partons at the LHC via a k t cut. Eur. Phys. J. C 73, 2361 (2013). https://doi.org/10.1140/epjc/s10052-013-2361-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2361-6

Keywords

Navigation