Skip to main content
Log in

A fat gluino in disguise

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper, we investigate how a sizeable width-to-mass ratio for a gluino, as is for example realized in GMSB scenarios, could affect the discovery potential of gluinos at the LHC. More importantly, the influence of the gluino being “fat” on the standard mass and spin determination methods at the LHC are investigated. For this purpose, we focus on gluino production at the LHC, where we do not factorize the first step in the gluino decay cascade, but treat the following decay cascade steps in factorization, including full spin correlations. The effects of sizeable width-to-mass ratios from a few up to 15–20 per cent on the endpoint of several mass determination methods as well as on means for discrimination between BSM spin paradigms like SUSY and UED are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. E.g. M TGen [64], which is the minimum of M T2 for all possible momentum assignments into two partitions.

References

  1. D. Berdine, N. Kauer, D. Rainwater, Phys. Rev. Lett. 99, 111601 (2007). hep-ph/0703058

    Article  ADS  Google Scholar 

  2. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Phys. Lett. B 612, 223 (2005). Erratum-ibid B, 704, 667 (2011). hep-ph/0502063

    Article  ADS  Google Scholar 

  3. K. Hagiwara et al., Phys. Rev. D 73, 055005 (2006). arXiv:hep-ph/0512260

    Article  ADS  Google Scholar 

  4. J. Reuter, W. Kilian, K. Hagiwara, F. Krauss, S. Schumann, T. Ohl, T. Plehn, D. Rainwater. hep-ph/0512012

  5. N. Kauer, J. High Energy Phys. 0804, 055 (2008). arXiv:0708.1161 [hep-ph]

    Article  ADS  Google Scholar 

  6. C.F. Uhlemann, N. Kauer, Nucl. Phys. B 814, 195 (2009). arXiv:0807.4112 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  7. B.C. Allanach, M. Battaglia, G.A. Blair, M.S. Carena, A. De Roeck, A. Dedes, A. Djouadi, D. Gerdes et al., Eur. Phys. J. C 25, 113 (2002). hep-ph/0202233

    Article  ADS  Google Scholar 

  8. N. Pietsch, J. Reuter, K. Sakurai, D. Wiesler, J. High Energy Phys. 1207, 148 (2012). arXiv:1206.2146 [hep-ph]

    Article  ADS  Google Scholar 

  9. D. Wiesler, PhD thesis, Hamburg Univ., October 2012

  10. J. Reuter, D. Wiesler, Phys. Rev. D 84, 015012 (2011). arXiv:1010.4215 [hep-ph]

    Article  ADS  Google Scholar 

  11. B. Dutta, T. Kamon, N. Kolev, A. Krislock, Phys. Lett. B 703, 475 (2011). arXiv:1104.2508 [hep-ph]

    Article  ADS  Google Scholar 

  12. A. Rajaraman, F. Yu, Phys. Lett. B 700, 126 (2011). arXiv:1009.2751 [hep-ph]

    Article  ADS  Google Scholar 

  13. P. Baringer, K. Kong, M. McCaskey, D. Noonan, J. High Energy Phys. 1110, 101 (2011). arXiv:1109.1563 [hep-ph]

    Article  ADS  Google Scholar 

  14. K. Choi, D. Guadagnoli, C.B. Park, J. High Energy Phys. 1111, 117 (2011). arXiv:1109.2201 [hep-ph]

    Article  ADS  Google Scholar 

  15. J. Alwall, K. Hiramatsu, M.M. Nojiri, Y. Shimizu, Phys. Rev. Lett. 103, 151802 (2009). arXiv:0905.1201 [hep-ph]

    Article  ADS  Google Scholar 

  16. M.M. Nojiri, K. Sakurai, Phys. Rev. D 82, 115026 (2010). arXiv:1008.1813 [hep-ph]

    Article  ADS  Google Scholar 

  17. A.J. Barr, C.G. Lester, J. Phys. G 37, 123001 (2010). arXiv:1004.2732 [hep-ph]

    Article  ADS  Google Scholar 

  18. I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist, W. Yao, Phys. Rev. D 55, 5520 (1997). hep-ph/9610544

    Article  ADS  Google Scholar 

  19. H. Baer, C.-h. Chen, M. Drees, F. Paige, X. Tata, Phys. Rev. D 59, 055014 (1999). hep-ph/9809223

    Article  ADS  Google Scholar 

  20. I. Hinchliffe, F.E. Paige, Phys. Rev. D 60, 095002 (1999). hep-ph/9812233

    Article  ADS  Google Scholar 

  21. H. Bachacou, I. Hinchliffe, F.E. Paige, Phys. Rev. D 62, 015009 (2000). hep-ph/9907518

    Article  ADS  Google Scholar 

  22. I. Hinchliffe, F.E. Paige, Phys. Rev. D 61, 095011 (2000). hep-ph/9907519

    Article  ADS  Google Scholar 

  23. B.C. Allanach, C.G. Lester, M.A. Parker, B.R. Webber, J. High Energy Phys. 0009, 004 (2000). hep-ph/0007009

    Article  ADS  Google Scholar 

  24. W.S. Cho, K. Choi, Y. G. Kim, C. B. Park, Phys. Rev. Lett. 100, 171801 (2008). arXiv:0709.0288 [hep-ph]

    Article  ADS  Google Scholar 

  25. W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, J. High Energy Phys. 0802, 035 (2008). arXiv:0711.4526 [hep-ph]

    Article  ADS  Google Scholar 

  26. B. Gripaios, J. High Energy Phys. 0802, 053 (2008). arXiv:0709.2740 [hep-ph]

    Article  ADS  Google Scholar 

  27. A.J. Barr, B. Gripaios, C.G. Lester, J. High Energy Phys. 0802, 014 (2008). arXiv:0711.4008 [hep-ph]

    Article  ADS  Google Scholar 

  28. M. Burns, K. Kong, K.T. Matchev, M. Park, J. High Energy Phys. 0903, 143 (2009). arXiv:0810.5576 [hep-ph]

    Article  ADS  Google Scholar 

  29. P. Konar, K. Kong, K.T. Matchev, M. Park, Phys. Rev. Lett. 105, 051802 (2010). arXiv:0910.3679 [hep-ph]

    Article  ADS  Google Scholar 

  30. T. Cohen, E. Kuflik, K.M. Zurek, J. High Energy Phys. 1011, 008 (2010). arXiv:1003.2204 [hep-ph]

    Article  ADS  Google Scholar 

  31. A.J. Barr, B. Gripaios, C.G. Lester, J. High Energy Phys. 0911, 096 (2009). arXiv:0908.3779 [hep-ph]

    Article  ADS  Google Scholar 

  32. P. Konar, K. Kong, K.T. Matchev, M. Park, J. High Energy Phys. 1004, 086 (2010). arXiv:0911.4126 [hep-ph]

    Article  ADS  Google Scholar 

  33. K. Desch, J. Kalinowski, G.A. Moortgat-Pick, M.M. Nojiri, G. Polesello, J. High Energy Phys. 0402, 035 (2004). hep-ph/0312069

    Article  ADS  Google Scholar 

  34. K. Kawagoe, M.M. Nojiri, G. Polesello, Phys. Rev. D 71, 035008 (2005). hep-ph/0410160

    Article  ADS  Google Scholar 

  35. H.-C. Cheng, J.F. Gunion, Z. Han, G. Marandella, B. McElrath, J. High Energy Phys. 0712, 076 (2007). arXiv:0707.0030 [hep-ph]

    Article  ADS  Google Scholar 

  36. H.-C. Cheng, D. Engelhardt, J.F. Gunion, Z. Han, B. McElrath, Phys. Rev. Lett. 100, 252001 (2008). arXiv:0802.4290 [hep-ph]

    Article  ADS  Google Scholar 

  37. H.-C. Cheng, J.F. Gunion, Z. Han, B. McElrath, Phys. Rev. D 80, 035020 (2009). arXiv:0905.1344 [hep-ph]

    Article  ADS  Google Scholar 

  38. B. Webber, J. High Energy Phys. 0909, 124 (2009). arXiv:0907.5307 [hep-ph]

    Article  ADS  Google Scholar 

  39. M.M. Nojiri, K. Sakurai, B.R. Webber, J. High Energy Phys. 1006, 069 (2010). arXiv:1005.2532 [hep-ph]

    Article  ADS  Google Scholar 

  40. S. Chatrchyan et al. (CMS Collaboration). arXiv:1211.4784 [hep-ex]

  41. S. Chatrchyan et al. (CMS Collaboration). arXiv:1211.3143 [hep-ex]

  42. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1108, 155 (2011). arXiv:1106.4503 [hep-ex]

    Article  ADS  Google Scholar 

  43. G. Aad et al. (ATLAS Collaboration), arXiv:1211.1167 [hep-ex]

  44. G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1111, 099 (2011). arXiv:1110.2299 [hep-ex]

    Article  ADS  Google Scholar 

  45. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1108, 156 (2011). arXiv:1107.1870 [hep-ex]

    Article  ADS  Google Scholar 

  46. B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). hep-ph/0104145

    Article  ADS  MATH  Google Scholar 

  47. A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38, 635 (2007). hep-ph/0609292

    ADS  Google Scholar 

  48. P.Z. Skands, B.C. Allanach, H. Baer, C. Balazs, G. Belanger, F. Boudjema, A. Djouadi, R. Godbole et al., J. High Energy Phys. 0407, 036 (2004). hep-ph/0311123

    Article  ADS  Google Scholar 

  49. B.C. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema, D. Choudhury, K. Desch, U. Ellwanger et al., Comput. Phys. Commun. 180, 8 (2009). arXiv:0801.0045 [hep-ph]

    Article  ADS  Google Scholar 

  50. J.A. Aguilar-Saavedra, A. Ali, B.C. Allanach, R.L. Arnowitt, H.A. Baer, J.A. Bagger, C. Balazs, V.D. Barger et al., Eur. Phys. J. C 46, 43 (2006). hep-ph/0511344 [hep-ph]

    Article  ADS  Google Scholar 

  51. W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51 (1997). arXiv:hep-ph/9610490

    ADS  Google Scholar 

  52. W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C 71, 1742 (2011). arXiv:0708.4233 [hep-ph]

    Article  ADS  Google Scholar 

  53. M. Moretti, T. Ohl, J. Reuter. arXiv:hep-ph/0102195

  54. W. Kilian, J. Reuter, S. Schmidt, D. Wiesler, J. High Energy Phys. 1204, 013 (2012). arXiv:1112.1039 [hep-ph]

    Article  ADS  Google Scholar 

  55. W. Kilian, T. Ohl, J. Reuter, C. Speckner, J. High Energy Phys. 1210, 022 (2012). arXiv:1206.3700 [hep-ph]

    Article  ADS  Google Scholar 

  56. M. Dobbs, J.B. Hansen, Comput. Phys. Commun. 134, 41 (2001)

    Article  ADS  Google Scholar 

  57. I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, P. Canal, D. Casadei et al., Comput. Phys. Commun. 182, 1384 (2011)

    Article  ADS  Google Scholar 

  58. D. Curtin, Phys. Rev. D 85, 075004 (2012). arXiv:1112.1095 [hep-ph]

    Article  ADS  Google Scholar 

  59. C.G. Lester, D.J. Summers, Phys. Lett. B 463, 99 (1999). hep-ph/9906349

    Article  ADS  Google Scholar 

  60. A. Barr, C. Lester, P. Stephens, J. Phys. G 29, 2343 (2003). hep-ph/0304226

    Article  ADS  Google Scholar 

  61. M.M. Nojiri, Y. Shimizu, S. Okada, K. Kawagoe, J. High Energy Phys. 0806, 035 (2008). arXiv:0802.2412 [hep-ph]

    Article  ADS  Google Scholar 

  62. M.M. Nojiri, K. Sakurai, Y. Shimizu, M. Takeuchi, J. High Energy Phys. 0810, 100 (2008). arXiv:0808.1094 [hep-ph]

    Article  ADS  Google Scholar 

  63. S.-G. Kim, N. Maekawa, K.I. Nagao, M.M. Nojiri, K. Sakurai, J. High Energy Phys. 0910, 005 (2009). arXiv:0907.4234 [hep-ph]

    Article  ADS  Google Scholar 

  64. C. Lester, A. Barr, J. High Energy Phys. 0712, 102 (2007). arXiv:0708.1028 [hep-ph]

    Article  ADS  Google Scholar 

  65. J.M. Smillie, B.R. Webber, J. High Energy Phys. 0510, 069 (2005). hep-ph/0507170

    Article  ADS  Google Scholar 

  66. A. Alves, O. Eboli, T. Plehn, Phys. Rev. D 74, 095010 (2006). hep-ph/0605067

    Article  ADS  Google Scholar 

  67. H.-C. Cheng, K.T. Matchev, M. Schmaltz, Phys. Rev. D 66, 056006 (2002). hep-ph/0205314

    Article  ADS  Google Scholar 

  68. N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614 (2009). arXiv:0806.4194 [hep-ph]

    Article  ADS  Google Scholar 

  69. N.D. Christensen, C. Duhr, B. Fuks, J. Reuter, C. Speckner, Eur. Phys. J. C 72, 1990 (2012). arXiv:1010.3251 [hep-ph]

    Article  ADS  Google Scholar 

  70. A.J. Barr, J. High Energy Phys. 0602, 042 (2006). hep-ph/0511115

    Article  ADS  Google Scholar 

  71. G. Moortgat-Pick, K. Rolbiecki, J. Tattersall, Phys. Lett. B 699, 158 (2011). arXiv:1102.0293 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Pietsch, K. Rolbiecki, and K. Sakurai for fruitful and enlightening discussions. J.R.R. wants to thank D. Rainwater, who partially initiated the idea for the studies performed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Reuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, J., Wiesler, D. A fat gluino in disguise. Eur. Phys. J. C 73, 2355 (2013). https://doi.org/10.1140/epjc/s10052-013-2355-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2355-4

Keywords

Navigation