Skip to main content
Log in

Tricritical gravity waves in the four-dimensional generalized massive gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We construct a generalized massive gravity by combining quadratic curvature gravity with the Chern–Simons term in four dimensions. This may be a candidate for the parity-odd tricritical gravity theory. Considering the AdS4 vacuum solution, we derive the linearized Einstein equation, which is not similar to that of the three dimensional (3D) generalized massive gravity. When a perturbed metric tensor is chosen to be the Kerr–Schild form, the linearized equation reduces to a single massive scalar equation. At the tricritical points where two masses are equal to −1 and 2, we obtain a log-square wave solution to the massive scalar equation. This is compared to 3D tricritical generalized massive gravity, whose dual is a rank-3 logarithmic conformal field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We note that in dynamical Chern–Simons (DCS) gravity [2931], the scalar θ is treated as a dynamical field by adding its kinetic and potential terms.

  2. One can find the same expression (2.4) in the literature [28, 29].

References

  1. K.S. Stelle, Phys. Rev. D 16, 953 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Li, W. Song, A. Strominger, J. High Energy Phys. 0804, 082 (2008). arXiv:0801.4566 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Lu, C.N. Pope, Phys. Rev. Lett. 106, 181302 (2011). arXiv:1101.1971 [hep-th]

    Article  ADS  Google Scholar 

  4. S. Deser, H. Liu, H. Lu, C.N. Pope, T.C. Sisman, B. Tekin, Phys. Rev. D 83, 061502 (2011). arXiv:1101.4009 [hep-th]

    Article  ADS  Google Scholar 

  5. M. Porrati, M.M. Roberts, Phys. Rev. D 84, 024013 (2011). arXiv:1104.0674 [hep-th]

    Article  ADS  Google Scholar 

  6. M. Alishahiha, R. Fareghbal, Phys. Rev. D 83, 084052 (2011). arXiv:1101.5891 [hep-th]

    Article  ADS  Google Scholar 

  7. E.A. Bergshoeff, O. Hohm, J. Rosseel, P.K. Townsend, Phys. Rev. D 83, 104038 (2011). arXiv:1102.4091 [hep-th]

    Article  ADS  Google Scholar 

  8. H. Lu, C.N. Pope, E. Sezgin, L. Wulff, J. High Energy Phys. 1110, 131 (2011). arXiv:1107.2480 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Grumiller, N. Johansson, J. High Energy Phys. 0807, 134 (2008). arXiv:0805.2610 [hep-th]

    Article  ADS  Google Scholar 

  10. Y.S. Myung, Phys. Lett. B 670, 220 (2008). arXiv:0808.1942 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Maloney, W. Song, A. Strominger, Phys. Rev. D 81, 064007 (2010). arXiv:0903.4573 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Gurarie, Nucl. Phys. B 410, 535 (1993). hep-th/9303160

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M. Flohr, Int. J. Mod. Phys. A 18, 4497 (2003). hep-th/0111228

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Nutma, Phys. Rev. D 85, 124040 (2012). arXiv:1203.5338 [hep-th]

    Article  ADS  Google Scholar 

  15. E.A. Bergshoeff, S. de Haan, W. Merbis, M. Porrati, J. Rosseel, J. High Energy Phys. 1204, 134 (2012). arXiv:1201.0449 [hep-th]

    Article  ADS  Google Scholar 

  16. E.A. Bergshoeff, S. de Haan, W. Merbis, J. Rosseel, T. Zojer, arXiv:1206.3089 [hep-th]

  17. N. Johansson, A. Naseh, T. Zojer, arXiv:1205.5804 [hep-th]

  18. A. Kleinschmidt, T. Nutma, A. Virmani, arXiv:1206.7095 [hep-th]

  19. L. Apolo, M. Porrati, arXiv:1206.5231 [hep-th]

  20. H. Lu, Y. Pang, C.N. Pope, Phys. Rev. D 84, 064001 (2011). arXiv:1106.4657 [hep-th]

    Article  ADS  Google Scholar 

  21. Y. Liu, Y.-W. Sun, Phys. Rev. D 79, 126001 (2009). arXiv:0904.0403 [hep-th]

    Article  ADS  Google Scholar 

  22. S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140, 372 (1982). Ann. Phys. 185, 406 (1988) (Erratum)

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 281, 409 (2000)

    Article  ADS  Google Scholar 

  24. E.A. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. Lett. 102, 201301 (2009). arXiv:0901.1766 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  25. D. Grumiller, N. Johansson, T. Zojer, J. High Energy Phys. 1101, 090 (2011). arXiv:1010.4449 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  26. E. Ayon-Beato, G. Giribet, M. Hassaine, J. High Energy Phys. 0905, 029 (2009). arXiv:0904.0668 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  27. Y.-W. Kim, Y.S. Myung, Y.-J. Park, Phys. Rev. D 86, 064017 (2012). arXiv:1207.3149 [hep-th]

    Article  ADS  Google Scholar 

  28. R. Jackiw, S.Y. Pi, Phys. Rev. D 68, 104012 (2003). gr-qc/0308071

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Alexander, N. Yunes, Phys. Rep. 480, 1 (2009). arXiv:0907.2562 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  30. V. Cardoso, L. Gualtieri, Phys. Rev. D 80, 064008 (2009). arXiv:0907.5008 [gr-qc]. Phys. Rev. D 81, 089903 (2010) (Erratum)

    Article  ADS  Google Scholar 

  31. T. Moon, Y.S. Myung, Phys. Rev. D 84, 104029 (2011). arXiv:1109.2719 [gr-qc] and references therein

    Article  ADS  Google Scholar 

  32. T. Moon, Y.S. Myung, Eur. Phys. J. C 71, 1796 (2011). arXiv:1108.2612 [hep-th]

    Article  ADS  Google Scholar 

  33. E. Ayon-Beato, G. Giribet, M. Hassaine, Phys. Rev. D 83, 104033 (2011). arXiv:1103.0742 [hep-th]

    Article  ADS  Google Scholar 

  34. I. Gullu, M. Gurses, T.C. Sisman, B. Tekin, Phys. Rev. D 83, 084015 (2011). arXiv:1102.1921 [hep-th]

    Article  ADS  Google Scholar 

  35. B. Tekin, Phys. Rev. D 77, 024005 (2008). arXiv:0710.2528 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  36. E. Ayon-Beato, M. Hassaine, Phys. Rev. D 73, 104001 (2006). hep-th/0512074

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) through the Center for Quantum Spacetime (CQUeST) of Sogang University with grant number 2005-0049409. Y. Myung was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-040499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Soo Myung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, T., Myung, Y.S. Tricritical gravity waves in the four-dimensional generalized massive gravity. Eur. Phys. J. C 73, 2308 (2013). https://doi.org/10.1140/epjc/s10052-013-2308-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2308-y

Keywords

Navigation