Skip to main content
Log in

On the running coupling in the JIMWLK equation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We propose a new method to implement the running coupling constant in the JIMWLK equation, imposing the scale dependence on the correlation function of the random noise in the Langevin formulation. We interpret this scale choice as the transverse momentum of the emitted gluon in one step of the evolution and show that it is related to the “Balitsky” prescription for the BK equation. This slows down the evolution speed of a practical solution of the JIMWLK equation, bringing it closer to the x-dependence inferred from fits to HERA data. We further study our proposal by a numerical comparison of the BK and JIMWLK equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Annu. Rev. Nucl. Part. Sci. 60, 463 (2010). arXiv:1002.0333 [hep-ph]

    Article  ADS  Google Scholar 

  2. T. Lappi, Int. J. Mod. Phys. E 20, 1 (2011). arXiv:1003.1852 [hep-ph]

    ADS  Google Scholar 

  3. J. Jalilian-Marian, A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D 55, 5414 (1997). arXiv:hep-ph/9606337

    ADS  Google Scholar 

  4. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Nucl. Phys. B 504, 415 (1997). arXiv:hep-ph/9701284

    Article  ADS  Google Scholar 

  5. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D 59, 014014 (1999). arXiv:hep-ph/9706377

    ADS  Google Scholar 

  6. J. Jalilian-Marian, A. Kovner, H. Weigert, Phys. Rev. D 59, 014015 (1999). arXiv:hep-ph/9709432

    ADS  Google Scholar 

  7. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D 59, 034007 (1999). arXiv:hep-ph/9807462

    ADS  Google Scholar 

  8. E. Iancu, A. Leonidov, L.D. McLerran, Nucl. Phys. A 692, 583 (2001). arXiv:hep-ph/0011241

    Article  ADS  MATH  Google Scholar 

  9. E. Iancu, L.D. McLerran, Phys. Lett. B 510, 145 (2001). arXiv:hep-ph/0103032

    ADS  MATH  Google Scholar 

  10. E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 703, 489 (2002). arXiv:hep-ph/0109115

    Article  ADS  MATH  Google Scholar 

  11. E. Iancu, A. Leonidov, L.D. McLerran, Phys. Lett. B 510, 133 (2001). arXiv:hep-ph/0102009

    ADS  MATH  Google Scholar 

  12. H. Weigert, Nucl. Phys. A 703, 823 (2002). arXiv:hep-ph/0004044

    Article  ADS  Google Scholar 

  13. A.H. Mueller, Phys. Lett. B 523, 243 (2001). arXiv:hep-ph/0110169

    ADS  Google Scholar 

  14. I. Balitsky, Nucl. Phys. B 463, 99 (1996). arXiv:hep-ph/9509348

    Article  ADS  Google Scholar 

  15. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). arXiv:hep-ph/9901281

    ADS  Google Scholar 

  16. Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000). arXiv:hep-ph/9905214

    ADS  Google Scholar 

  17. C. Marquet, Nucl. Phys. A 796, 41 (2007). arXiv:0708.0231 [hep-ph]

    Article  ADS  Google Scholar 

  18. J.L. Albacete, C. Marquet, Phys. Rev. Lett. 105, 162301 (2010). arXiv:1005.4065 [hep-ph]

    Article  ADS  Google Scholar 

  19. A. Dumitru, J. Jalilian-Marian, T. Lappi, B. Schenke, R. Venugopalan, Phys. Lett. B 706, 219 (2011). arXiv:1108.4764 [hep-ph]

    ADS  Google Scholar 

  20. F. Dominguez, C. Marquet, B.-W. Xiao, F. Yuan, Phys. Rev. D 83, 105005 (2011). arXiv:1101.0715 [hep-ph]

    ADS  Google Scholar 

  21. T. Lappi, H. Mäntysaari, arXiv:1209.2853 [hep-ph]

  22. A. Dumitru, F. Gelis, L. McLerran, R. Venugopalan, Nucl. Phys. A 810, 91 (2008). arXiv:0804.3858 [hep-ph]

    Article  ADS  Google Scholar 

  23. F. Gelis, T. Lappi, R. Venugopalan, Phys. Rev. D 79, 094017 (2008). arXiv:0810.4829 [hep-ph]

    ADS  Google Scholar 

  24. K. Dusling, F. Gelis, T. Lappi, R. Venugopalan, Nucl. Phys. A 836, 159 (2010). arXiv:0911.2720 [hep-ph]

    Article  ADS  Google Scholar 

  25. A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi, R. Venugopalan, Phys. Lett. B 697, 21 (2011). arXiv:1009.5295 [hep-ph]

    ADS  Google Scholar 

  26. K. Dusling, R. Venugopalan, Phys. Rev. Lett. 108, 262001 (2012). arXiv:1201.2658 [hep-ph]

    Article  ADS  Google Scholar 

  27. Y.V. Kovchegov, H. Weigert, Nucl. Phys. A 784, 188 (2007). arXiv:hep-ph/0609090

    Article  ADS  Google Scholar 

  28. I. Balitsky, Phys. Rev. D 75, 014001 (2007). arXiv:hep-ph/0609105

    Article  ADS  Google Scholar 

  29. J.L. Albacete, Y.V. Kovchegov, Phys. Rev. D 75, 125021 (2007). arXiv:0704.0612 [hep-ph]

    ADS  Google Scholar 

  30. J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, Phys. Rev. D 80, 034031 (2009). arXiv:0902.1112 [hep-ph]

    ADS  Google Scholar 

  31. J.L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga-Arias, C.A. Salgado, Eur. Phys. J. C 71, 1705 (2011). arXiv:1012.4408 [hep-ph]

    Article  ADS  Google Scholar 

  32. J.L. Albacete, C. Marquet, Phys. Lett. B 687, 174 (2010). arXiv:1001.1378 [hep-ph]

    ADS  Google Scholar 

  33. J. Kuokkanen, K. Rummukainen, H. Weigert, Nucl. Phys. A 875, 29 (2012). arXiv:1108.1867 [hep-ph]

    Article  ADS  Google Scholar 

  34. J.L. Albacete, A. Dumitru, H. Fujii, Y. Nara, arXiv:1209.2001 [hep-ph]

  35. I. Balitsky, G.A. Chirilli, Phys. Rev. D 77, 014019 (2008). arXiv:0710.4330 [hep-ph]

    ADS  Google Scholar 

  36. E. Avsar, A. Stasto, D. Triantafyllopoulos, D. Zaslavsky, J. High Energy Phys. 1110, 138 (2011). arXiv:1107.1252 [hep-ph]

    Article  ADS  Google Scholar 

  37. T. Lappi, Phys. Lett. B 703, 325 (2011). arXiv:1105.5511 [hep-ph]

    ADS  Google Scholar 

  38. A. Kovner, M. Lublinsky, J. High Energy Phys. 0503, 001 (2005). arXiv:hep-ph/0502071

    Article  ADS  Google Scholar 

  39. A. Kovner, M. Lublinsky, Phys. Rev. Lett. 94, 181603 (2005). arXiv:hep-ph/0502119

    Article  ADS  Google Scholar 

  40. E. Iancu, D. Triantafyllopoulos, J. High Energy Phys. 1204, 025 (2012). arXiv:1112.1104 [hep-ph]

    Article  ADS  Google Scholar 

  41. J.-P. Blaizot, E. Iancu, H. Weigert, Nucl. Phys. A 713, 441 (2003). arXiv:hep-ph/0206279

    Article  ADS  MATH  Google Scholar 

  42. K. Rummukainen, H. Weigert, Nucl. Phys. A 739, 183 (2004). arXiv:hep-ph/0309306

    Article  ADS  Google Scholar 

  43. Y.V. Kovchegov, J. Kuokkanen, K. Rummukainen, H. Weigert, Nucl. Phys. A 823, 47 (2009). arXiv:0812.3238 [hep-ph]

    Article  ADS  Google Scholar 

  44. C. Marquet, H. Weigert, Nucl. Phys. A 843, 68 (2010). arXiv:1003.0813 [hep-ph]

    Article  ADS  Google Scholar 

  45. J.W. Cooley, J.W. Tukey, Math. Comput. 19, 297 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Lappi, Eur. Phys. J. C 55, 285 (2008). arXiv:0711.3039 [hep-ph]

    Article  ADS  Google Scholar 

  47. E. Gardi, J. Kuokkanen, K. Rummukainen, H. Weigert, Nucl. Phys. A 784, 282 (2007). arXiv:hep-ph/0609087

    Article  ADS  Google Scholar 

  48. J.L. Albacete, Phys. Rev. Lett. 99, 262301 (2007). arXiv:0707.2545 [hep-ph]

    Article  ADS  Google Scholar 

  49. K.J. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017 (1999). arXiv:hep-ph/9807513

    Article  ADS  Google Scholar 

  50. E. Iancu, K. Itakura, S. Munier, Phys. Lett. B 590, 199 (2004). arXiv:hep-ph/0310338

    ADS  Google Scholar 

  51. G. Soyez, Phys. Lett. B 655, 32 (2007). arXiv:0705.3672 [hep-ph]

    ADS  Google Scholar 

  52. J. Kuokkanen, Ph.D. thesis, University of Oulu (2011)

Download references

Acknowledgements

T.L. thanks F. Gelis for discussions and IPhT, CEA/Saclay (URA du CNRS) for hospitality during the early stage of this work. H.M. is supported by the Graduate School of Particle and Nuclear Physics. This work has been supported by the Academy of Finland, project 133005, and by computing resources from CSC-IT Center for Science in Espoo, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lappi.

Appendix: Lattice effects

Appendix: Lattice effects

As test of the equivalence of the scales \(k_{T}^{2}\) in the momentum space coupling and the scale \(4e^{-2 \gamma_{\mathrm{E}}} /r_{T}^{2}\) in coordinate space we show in Fig. 9 a comparison between a solution of the rcJIMWLK equation using the two couplings. This can be done straightforwardly when one uses the “square root” coupling, where one can easily multiply either the kernel K x or its Fourier-transform with \(\sqrt{\alpha_{\mathrm{s}}}\). Thus the curves in Fig. 9 correspond to evolution using the kernels

$$ \sqrt{\alpha_{\mathrm{s}}({\mathbf{r}})} {\mathbf{K}}_{\mathbf{r}}, $$
(A.1)

labeled \(r \sqrt{\alpha_{\mathrm{s}}}\), and

$$ i(2\pi)^2 \int\frac{\mathrm{d}^2{\mathbf{k}}}{(2\pi)^2} \sqrt{\alpha_{\mathrm{s}}({ \mathbf{k}})}\frac{e^{-i {\mathbf {k}}\cdot{\mathbf{x}} }}{{\mathbf{k}}^2}, $$
(A.2)

labeled \(k \sqrt{\alpha_{\mathrm{s}}}\), with α s(x) and α s(k) given by Eqs. (39) and (40). They are seen to agree remarkably well, justifying our use of the constant \(4e^{-2\gamma_{\mathrm{E}}}\) in comparing the momentum and position space formulations.

Fig. 9
figure 9

Evolution of the scattering amplitude \(N \equiv1-\langle \hat{D}_{{\mathbf{r}} }\rangle\) with the “square root” coupling rcJIMWLK equation, with coupling evaluated at the scale \(k_{T}^{2}\) in the momentum space kernel, and at the scale \(4e^{-2\gamma_{\mathrm{E}}}/r_{T}^{2}\) in the position space kernel

The BK equation is solved on a logarithmic grid in r T , with the values of the scattering amplitude between the grid points obtained from interpolation. This allows one in practice to study as small or large r T -values as desired. In the case of JIMWLK, on the other hand, one works on a fixed linear lattice with cutoffs ∼1/L in the infrared and ∼1/a in the ultraviolet. One expects large lattice effects when Q s∼1/L and when Q s∼1/a, and since Q s changes exponentially during the evolution, this restricts the accessible rapidity range.

To illustrate the numerical uncertainties in our calculation we compare in Fig. 10 the rcJIMWLK calculation with a square root running coupling, shown also in Fig. 6, to the BK equation with the same running coupling prescription. One can see that the solutions agree very well for smaller rapidities, but start to deviate more later in the evolution. Also shown is a rcJIMWLK calculation with the same initial g 2 μ/Λ QCD (approximately the same Q s/Λ QCD) performed on a smaller 5122-lattice in such a way that either the IR ∼1/L or UV ∼1/a cutoff is different. We see that for the initial condition Q s is so small that changing the IR cutoff starts to have an effect. More importantly, late in the evolution the solution becomes sensitive to the UV cutoff; an extrapolation to a→0 would bring the JIMWLK result closer to BK.

Fig. 10
figure 10

Evolution of the scattering amplitude \(N \equiv1-\langle \hat{D}_{{\mathbf{r}} }\rangle\) with the “square root” rcJIMWLK equation (dotted line) and with the BK equation (thinner dashed line) using the same “square root” running coupling. The initial condition is the same as in Fig. 6 and the amplitude is shown every 4 units in y. Also shown are JIMWLK simulations on a smaller 5122-lattice with the physical lattice size reduced (“small L”, thick dashed line) or lattice spacing increased (“large a”, thin solid line) by a factor 2

A further comparison of the evolution speed in the BK and rcJIMWLK codes is shown in Fig. 11. It can be seen that in BK the evolution is slightly faster, and increasingly so at large Q s, when the lattice ultraviolet cutoff in the JIMWLK code slows down the evolution. In a JIMWLK simulation closer to the continuum limit the difference would be smaller. The figure also demonstrates the dependence on the parameter c controlling the smoothness of the infrared regularization of the coupling. As was seen previously in Fig. 8, the evolution speed is sensitive to the regularization for small Q s/Λ QCD.

Fig. 11
figure 11

Evolution speed of the saturation scale λ with the “square root” coupling. Shown are the results from the BK and JIMWLK simulations with the same kernel, using infrared regularizations of the running coupling with different values of the parameter c

In addition, the BK and JIMWLK equations are not equivalent even in the continuum, because of the mean field approximation. Making a precise statement about this difference would require a more systematical extrapolation of the lattice calculation to the continuum and infinite volume limits than is done here. For fixed coupling the difference in the evolution speed between the BK and JIMWLK equations has been studied in Ref. [43], where JIMWLK evolution was found to be slower by few per cent, while an even smaller difference was seen for running coupling in Ref. [52].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappi, T., Mäntysaari, H. On the running coupling in the JIMWLK equation. Eur. Phys. J. C 73, 2307 (2013). https://doi.org/10.1140/epjc/s10052-013-2307-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2307-z

Keywords

Navigation