Skip to main content
Log in

A simple inert model solves the little hierarchy problem and provides a dark matter candidate

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We discuss a minimal extension to the standard model in which two singlet scalar states that only interacts with the Higgs boson are added. Their masses and interaction strengths are fixed by the two requirements of canceling the one-loop quadratic corrections to the Higgs boson mass and providing a viable dark matter candidate. Direct detection of the lightest of these new states in nuclear scattering experiments is possible with a cross section within reach of future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. LEP Electroweak Working Group. arXiv:0712.0929 [hep-ex]

  2. R. Barbieri, A. Strumia, hep-ph/0007265

  3. R. Barbieri, A. Strumia, Phys. Lett. B 462, 144 (1999). hep-ph/9905281

    Article  ADS  Google Scholar 

  4. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012). arXiv:1202.1408 [hep-ex]

    Article  ADS  Google Scholar 

  5. G. Aad et al. ATLAS-CONF-2012-093

  6. S. Chatrchyan et al. (CMS Collaboration), arXiv:1202.1488 [hep-ex]

  7. S. Chatrchyan et al., CMS-PAS-HIG-12-020

  8. G. Aad et al. (ATLAS Collaboration), arXiv:1109.6572 [hep-ex]

  9. G. Aad et al., ATLAS-CONF-2011-132

  10. S. Chatrchyan et al. (CMS Collaboration), arXiv:1109.2352 [hep-ex]

  11. S. Chatrchyan et al., 1107.5834 [hep-ex]

  12. S. Chatrchyan et al., CMS-PAS-HIG-11-020

  13. N.G. Deshpande, E. Ma, Phys. Rev. D 18, 2574 (1978)

    Article  ADS  Google Scholar 

  14. R. Barbieri, L.J. Hall, V.S. Rychkov, Phys. Rev. D 74, 015007 (2006). hep-ph/0603188

    Article  ADS  Google Scholar 

  15. M.J.G. Veltman, Acta Phys. Pol. B 12, 437 (1981)

    Google Scholar 

  16. P. Osland, T.T. Wu, Phys. Lett. B 291, 315 (1992)

    Article  ADS  Google Scholar 

  17. E. Ma, Phys. Rev. D 47, 2143 (1993). hep-ph/9209221

    Article  ADS  Google Scholar 

  18. G. Ossola, A. Sirlin, Eur. Phys. J. C 31, 165 (2003). hep-ph/0305050

    Article  ADS  MATH  Google Scholar 

  19. A. Kundu, S. Raychaudhuri, Phys. Rev. D 53, 4042 (1996). hep-ph/9410291

    Article  ADS  Google Scholar 

  20. F. Bazzocchi, M. Fabbrichesi, P. Ullio, Phys. Rev. D 75, 056004 (2007). hep-ph/0612280

    Article  ADS  Google Scholar 

  21. B. Grzadkowski, J. Wudka, Phys. Rev. Lett. 103, 091802 (2009). arXiv:0902.0628 [hep-ph]

    Article  ADS  Google Scholar 

  22. A. Drozd, B. Grzadkowski, J. Wudka, J. High Energy Phys. 1204, 006 (2012). arXiv:1112.2582 [hep-ph]

    Article  ADS  Google Scholar 

  23. N.G. Deshpande, R.J. Johnson, E. Ma, Phys. Lett. B 130, 61 (1983)

    Article  ADS  Google Scholar 

  24. J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. Lett. 30, 1268 (1973). Erratum-ibid., 31, 572 (1973)

    Article  ADS  Google Scholar 

  25. B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. Lett. 38, 883–885 (1977)

    Article  ADS  Google Scholar 

  26. J. McDonald, Phys. Rev. D 50, 3637 (1994). hep-ph/0702143 [hep-ph]

    Article  ADS  Google Scholar 

  27. C.P. Burgess, M. Pospelov, T. ter Veldhuis, Nucl. Phys. B 619, 709 (2001). hep-ph/0011335

    Article  ADS  Google Scholar 

  28. R. Dick, R.B. Mann, K.E. Wunderle, Nucl. Phys. B 805, 207 (2008). arXiv:0803.1444 [astro-ph]

    Article  ADS  MATH  Google Scholar 

  29. C.E. Yaguna, J. Cosmol. Astropart. Phys. 0903, 003 (2009). arXiv:0810.4267 [hep-ph]

    Article  ADS  Google Scholar 

  30. M. Srednicki, R. Watkins, K.A. Olive, Nucl. Phys. B 310, 693 (1988)

    Article  ADS  Google Scholar 

  31. P. Gondolo, G. Gelmini, Nucl. Phys. B 360, 145 (1991)

    Article  ADS  Google Scholar 

  32. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, Reading, 1993)

    Google Scholar 

  33. M. Cirelli, N. Fornengo, A. Strumia, Nucl. Phys. B 753, 178 (2006). hep-ph/0512090

    Article  ADS  Google Scholar 

  34. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  35. M. Cirelli et al., J. Cosmol. Astropart. Phys. 1103, 051 (2011). arXiv:1012.4515

    Article  ADS  Google Scholar 

  36. P. Ciafaloni et al., J. Cosmol. Astropart. Phys. 1103, 019 (2011). arXiv:1009.0224

    Article  ADS  Google Scholar 

  37. R. Barbieri, M. Frigeni, G.F. Giudice, Nucl. Phys. B 313, 725 (1989)

    Article  ADS  Google Scholar 

  38. J.R. Ellis et al., Phys. Rev. D 71, 095007 (2005). hep-ph/0502001

    Article  ADS  Google Scholar 

  39. A. Bottino et al., Astropart. Phys. 13, 215 (2000). hep-ph/9909228

    Article  ADS  Google Scholar 

  40. A. Bottino et al., Astropart. Phys. 18, 205 (2002). hep-ph/0111229

    Article  ADS  Google Scholar 

  41. http://dmtools.brown.edu/

Download references

Acknowledgements

We thank P. Ullio and N. Fornengo for explaining to us some aspects of DM physics. MF thanks SISSA for the hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fabbrichesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazzocchi, F., Fabbrichesi, M. A simple inert model solves the little hierarchy problem and provides a dark matter candidate. Eur. Phys. J. C 73, 2303 (2013). https://doi.org/10.1140/epjc/s10052-013-2303-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2303-3

Keywords

Navigation