Skip to main content
Log in

No radial excitations in low energy QCD. I. Diquarks and classification of mesons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We propose a new schematic model for mesons in which the building blocks are quarks and flavor-antisymmetric diquarks. The outcome is a new classification of the entire meson spectrum into quark–antiquark and diquark–antidiquark states which does not give rise to a radial quantum number: all mesons which have so far been believed to be radially excited are orbitally excited diquark–antidiquark states; similarly, there are no radially excited baryons. Further, mesons that were previously viewed as “exotic” are no longer exotic as they are now naturally integrated into the classification as diquark–antidiquark states. The classification also leads to the introduction of isorons (iso-hadrons), which are analogs of atomic isotopes, and their magic quantum numbers, which are analogs of the magic numbers of the nuclear shell model. The magic quantum numbers of isorons match the quantum numbers expected for low-lying glueballs in lattice QCD. We observe that interquark forces in mesons behave substantially differently from those in baryons: qualitatively, they are color–magnetic in mesons but color–electrostatic in baryons. We comment on potential models and the hydrogen atom. The implications of our results for confinement, asymptotic freedom, and a new set of relations between two fundamental properties of hadrons—their size and their energy—are discussed in our companion paper (Eur. Phys. J. C (2013). doi:10.1140/epjc/110052-013-2299-8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Experiments eventually showed that the pentaquark Θ + does not exist [13]; as Robert Jaffe said (Harvard seminar, 2004), “pentaquarks might come and go, but the diquarks are here to stay.”

  2. We omit those listed under “further states” in the PDG, as they have not been confirmed.

  3. For a multiplet by multiplet discussion of the process, see Appendix A.

  4. Definition taken from Encyclopaedia Brittanica online.

  5. We take Tables 14.2 and 14.3 of the PDG [13] to be the currently accepted quark model classification.

  6. This mass was reported as 1596 MeV in earlier editions of the PDG.

  7. This rough estimate does not take into account the difference between binding of \(\mathcal{Q}_{1}\) to \(\bar{\mathcal{Q}}_{1}\) and the binding of \(\mathcal{Q}_{2} \) to \(\bar{\mathcal{Q}}_{2}\).

  8. This is consistent with the difference in their binding energies under the interaction \(\mathcal{H}_{\mathrm{CM}}\)E=(−8+4/3)⋅20 MeV=133 MeV); see Table 1 and Sect. 5.

  9. As pointed out in [64], the data for decay amplitudes and branching fractions for mesons are anyway far from accurate, making it difficult to test any strong decay models [65, 7073].

  10. We do not include any of the mesons listed under “further states” in the PDG (those have not been confirmed).

References

  1. T. Friedmann, No radial excitations in low energy QCD. II. The shrinking radius of hadrons. Eur. Phys. J. C (2013) 73:2299. arXiv:0910.2231

    Google Scholar 

  2. Y. Ne’eman, Derivation of strong interactions from a gauge invariance. Nucl. Phys. 26, 222 (1961)

    Article  MathSciNet  Google Scholar 

  3. M. Gell-Mann, The Eightfold Way: a theory of strong interaction symmetry. California Institute of Technology Synchrotron Laboratory Report CTSL-20 (1961), unpublished

  4. M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  5. G. Zweig. CERN preprint 8419/Th412, 8182/Th401 (unpublished)

  6. M. Gell-Mann, Y. Ne’eman, The Eightfold Way (W. A. Benjamin, Inc., New York, 1964)

    Google Scholar 

  7. M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, D.B. Lichtenberg, Diquarks Rev. Mod. Phys. 65, 1199 (1993)

    Article  ADS  Google Scholar 

  8. C. Amsler, N.A. Tornqvist, Mesons beyond the naive quark model. Phys. Rep. 389, 61 (2004)

    Article  ADS  Google Scholar 

  9. T. Nakano et al. (LEPS Collaboration), Observation of S=+1 baryon resonance in photo-production from neutron. Phys. Rev. Lett. 91, 012002 (2003). arXiv:hep-ex/0301020

    Article  ADS  Google Scholar 

  10. R.L. Jaffe, Exotica. Phys. Rep. 409, 1 (2005) [Nucl. Phys. Proc. Suppl. 142, 343 (2005)]. arXiv:hep-ph/0409065

    Article  ADS  Google Scholar 

  11. C. Alexandrou, Ph. de Forcrand, B. Lucini, Evidence for diquarks in lattice QCD. Phys. Rev. Lett. 97, 222002 (2006)

    Article  ADS  Google Scholar 

  12. R.L. Jaffe, F. Wilczek, Diquarks and exotic spectroscopy. Phys. Rev. Lett. 91, 232003 (2003). arXiv:hep-ph/0307341

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Beringer et al. (Particle Data Group Collaboration), Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  14. F. Wilczek, Diquarks as inspiration and as objects. arXiv:hep-ph/0409168

  15. A. Selem, F. Wilczek, Hadron systematics and emergent diquarks. arXiv:hep-ph/0602128

  16. R.L. Jaffe, Multi-quark hadrons. 1. The phenomenology of \(q^{2}\bar {q}^{2}\) mesons. Phys. Rev. D 15, 267 (1977)

    Article  ADS  Google Scholar 

  17. C. Rosenzweig, Have mesons composed of charmed diquarks been discovered? Phys. Rev. Lett. 36, 697 (1976)

    Article  ADS  Google Scholar 

  18. H.J. Lipkin, Are there charmed—strange exotic mesons? Phys. Lett. B 70, 113 (1977)

    Article  ADS  Google Scholar 

  19. A. De Rujula, H. Georgi, S.L. Glashow, Molecular charmonium: a new spectroscopy? Phys. Rev. Lett. 38, 317 (1977)

    Article  ADS  Google Scholar 

  20. T.E. Browder, S. Pakvasa, A.A. Petrov, Comment on the new \(D_{s}^{(*)+} \pi^{0}\) resonances. Phys. Lett. B 578, 365 (2004). arXiv:hep-ph/0307054

    Article  ADS  Google Scholar 

  21. T. Barnes, F.E. Close, H.J. Lipkin, Implications of a D K molecule at 2.32-GeV. Phys. Rev. D 68, 054006 (2003). arXiv:hep-ph/0305025

    Article  ADS  Google Scholar 

  22. H.Y. Cheng, W.S. Hou, B decays as spectroscope for charmed four-quark states. Phys. Lett. B 566, 193 (2003). arXiv:hep-ph/0305038

    Article  ADS  Google Scholar 

  23. K. Terasaki, BABAR resonance as a new window of hadron physics. Phys. Rev. D 68, 011501 (2003). arXiv:hep-ph/0305213

    Article  ADS  Google Scholar 

  24. B. Nicolescu, J.P.B. de Melo, Is the D sJ (2632)+ meson a cryptoexotic tetraquark baryonium state? arXiv:hep-ph/0407088

  25. K. Terasaki, B.H.J. McKellar, Charmed scalar resonances: conventional and four-quark mesons. Prog. Theor. Phys. 114, 205 (2005). arXiv:hep-ph/0501188

    Article  ADS  Google Scholar 

  26. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Diquark-antidiquarks with hidden or open charm and the nature of X(3872). Phys. Rev. D 71, 014028 (2005). arXiv:hep-ph/0412098

    Article  ADS  Google Scholar 

  27. S. Godfrey, S.L. Olsen, The exotic XYZ charmonium-like mesons. arXiv:0801.3867 [hep-ph]

  28. S.L. Olsen, Hadronic spectrum—multiquark states. arXiv:0901.2371 [hep-ex]

  29. H. Guler, What are the X(3872) and D sJ particles? Prepared for Heavy Quarks and Leptons Workshop 2004, San Juan, Puerto Rico, 1–5 Jun 2004

  30. T. Barnes, Recent developments in charm spectroscopy: X(3872), \(D_{sJ}^{*}(2317)^{+}\) and D sJ (2463)+. Prepared for Heavy Quarks and Leptons Workshop 2004, San Juan, Puerto Rico, 1–5 Jun 2004

  31. E. Eichten et al., with updates by S. Eidelman, H. Mahlke-Kruger, C. Patrignani, New charmonium-like states, in [13]

  32. G. Cotugno, R. Faccini, A.D. Polosa, C. Sabelli, Charmed Baryonium. Phys. Rev. Lett. 104, 132005 (2010). arXiv:0911.2178 [hep-ph]

    Article  ADS  Google Scholar 

  33. T.J. Burns, F. Piccinini, A.D. Polosa, C. Sabelli, The 2−+ assignment for the X(3872). Phys. Rev. D 82, 074003 (2010). arXiv:1008.0018 [hep-ph]

    Article  ADS  Google Scholar 

  34. R. Faccini, F. Piccinini, A. Pilloni, A.D. Polosa, On the spin of the X(3872). Phys. Rev. D 86, 054012 (2012). arXiv:1204.1223 [hep-ph]

    Article  ADS  Google Scholar 

  35. R. Pohl et al., The size of the proton. Nature 466, 213–216 (2010)

    Article  ADS  Google Scholar 

  36. A. Antognini et al., Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogens. Science 339, 417 (2013)

    Article  ADS  Google Scholar 

  37. T. Friedmann, No radial excitations in low energy QCD. I. Diquarks and classification of mesons. arXiv:0910.2229 [hep-ph] v.1

  38. T. Friedmann, No radial excitations in low energy QCD. II. The shrinking radius of hadrons. arXiv:0910.2231 [hep-ph] v.1

  39. R.F. Perez Benito, Exclusive ρ 0 production measured with the HERMES recoil detector. Doctoral Dissertation, Giessen University, 2010

  40. A. Bondar et al. (Belle Collaboration), Observation of two charged bottomonium-like resonances in Y(5S) decays. Phys. Rev. Lett. 108, 122001 (2012). arXiv:1110.2251 [hep-ex]

    Article  ADS  Google Scholar 

  41. R.L. Jaffe, Color, spin, and flavor-dependent forces in quantum chromodynamics. arXiv:hep-ph/0001123

  42. T. Burns, F.E. Close, J.J. Dudek, Pentaquark implications for exotic mesons. Phys. Rev. D 71, 014017 (2005). arXiv:hep-ph/0411160

    Article  ADS  Google Scholar 

  43. N. Isgur, Critique of a pion exchange model for interquark forces. Phys. Rev. D 62, 054026 (2000). arXiv:nucl-th/9908028

    Article  ADS  Google Scholar 

  44. M.G. Mayer, On closed shells in nuclei. Phys. Rev. 74, 235 (1948)

    Article  ADS  Google Scholar 

  45. C.J. Morningstar, M.J. Peardon, The glueball spectrum from an anisotropic lattice study. Phys. Rev. D 60, 034509 (1999). arXiv:hep-lat/9901004

    Article  ADS  Google Scholar 

  46. Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices. Phys. Rev. D 73, 014516 (2006). arXiv:hep-lat/0510074

    Article  ADS  Google Scholar 

  47. W. Lucha, F.F. Schoberl, D. Gromes, Bound states of quarks. Phys. Rep. 200, 127 (1991)

    Article  ADS  Google Scholar 

  48. S.J. Brodsky, R. Shrock, Maximum wavelength of confined quarks and gluons and properties of quantum chromodynamics. Phys. Lett. B 666, 95 (2008). arXiv:0806.1535 [hep-th]

    Article  ADS  Google Scholar 

  49. G.F. de Teramond, S.J. Brodsky, Light-front holography: a first approximation to QCD. Phys. Rev. Lett. 102, 081601 (2009). arXiv:0809.4899 [hep-ph]

    Article  ADS  Google Scholar 

  50. N. Barash-Schmidt et al., Review of particle properties. Rev. Mod. Phys. 41, 109 (1969)

    Article  ADS  Google Scholar 

  51. V. Chaloupka et al. (Particle Data Group), Review of particle properties. Phys. Lett. B 50, 1 (1974)

    Google Scholar 

  52. T.G. Trippe et al. (Particle Data Group), Review of particle properties. Rev. Mod. Phys. 48, S1 (1976) [Erratum-ibid. 48, 497 (1976)]

    Article  ADS  Google Scholar 

  53. C. Bricman et al. (Particle Data Group), Review of particle properties. Phys. Lett. B 75, 1 (1978)

    Article  ADS  Google Scholar 

  54. R.L. Jaffe, Quark confinement. Nature 268, 201 (1977)

    Article  ADS  Google Scholar 

  55. R.L. Kelly et al. (Particle Data Group), Review of particle properties. Rev. Mod. Phys. 52, S1 (1980)

    Article  ADS  Google Scholar 

  56. K. Hikasa et al. (Particle Data Group), Review of particle properties. Phys. Rev. D 45, S1 (1992) [Erratum-ibid. D 46, 5210 (1992)]

    Article  Google Scholar 

  57. K. Hagiwara et al. (Particle Data Group), Review of particle physics. Phys. Rev. D 66, 010001 (2002)

    Article  ADS  Google Scholar 

  58. S. Eidelman et al. (Particle Data Group), Review of particle properties. Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  59. C. Amsler, private communication

  60. J.L. Rosner, private communication

  61. T. Barnes, Radial excitations. arXiv:hep-ph/9907259

  62. A.M. Badalian, B.L.G. Bakker, Y.A. Simonov, Light meson radial Regge trajectories. Phys. Rev. D 66, 034026 (2002). arXiv:hep-ph/0204088

    Article  ADS  Google Scholar 

  63. A.V. Anisovich et al., A J PC=0−+ enhancement at the f 0(980)η threshold. Phys. Lett. B 472, 168 (2000)

    Article  ADS  Google Scholar 

  64. T. Barnes, Light meson spectroscopy: recent developments and DAPHNE. arXiv:hep-ph/0001326

  65. T. Barnes, N. Black, P.R. Page, Strong decays of strange quarkonia. Phys. Rev. D 68, 054014 (2003). arXiv:nucl-th/0208072

    Article  ADS  Google Scholar 

  66. D. Melikhov, O. Pene, Is the resonance D(2637) really a radial excitation? Phys. Lett. B 446, 336 (1999). arXiv:hep-ph/9809308

    Article  ADS  Google Scholar 

  67. S.U. Chung, E. Klempt, J.G. Korner, SU(3) classification of p-wave ηπ and ηπ systems. Eur. Phys. J. A 15, 539 (2002). arXiv:hep-ph/0211100

    Article  ADS  Google Scholar 

  68. D.R. Thompson et al. (E852 Collaboration), Evidence for exotic meson production in the reaction π pηπ p at 18-GeV/c. Phys. Rev. Lett. 79, 1630 (1997). arXiv:hep-ex/9705011

    Article  ADS  Google Scholar 

  69. D. Black, A.H. Fariborz, F. Sannino, J. Schechter, Putative light scalar nonet. Phys. Rev. D 59, 074026 (1999). arXiv:hep-ph/9808415

    Article  ADS  Google Scholar 

  70. T. Barnes, F.E. Close, P.R. Page, E.S. Swanson, Higher quarkonia. Phys. Rev. D 55, 4157 (1997). arXiv:hep-ph/9609339

    Article  ADS  Google Scholar 

  71. F.E. Close, P.R. Page, How to distinguish hybrids from radial quarkonia. Phys. Rev. D 56, 1584 (1997). arXiv:hep-ph/9701425

    Article  ADS  Google Scholar 

  72. R. Kokoski, N. Isgur, Meson decays by flux tube breaking. Phys. Rev. D 35, 907 (1987)

    Article  ADS  Google Scholar 

  73. E.S. Ackleh, T. Barnes, E.S. Swanson, On the mechanism of open-flavor strong decays. Phys. Rev. D 54, 6811 (1996). arXiv:hep-ph/9604355

    Article  ADS  Google Scholar 

  74. H.M. Chan, H. Hogaasen, Strings, bags, and baryoniums. Phys. Lett. B 72, 400 (1978)

    Article  ADS  Google Scholar 

  75. H.M. Chan, H. Hogaasen, Baryonium states in multiquark spectroscopy. Phys. Lett. B 72, 121 (1977)

    Article  ADS  Google Scholar 

  76. R.L. Jaffe, \(Q^{2}\bar{Q}^{2}\) resonances in the baryon—anti-baryon system. Phys. Rev. D 17, 1444 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  77. A.W. Hendry, I. Hinchliffe, Metastable exotic mesons. Phys. Rev. D 18, 3453 (1978)

    Article  ADS  Google Scholar 

  78. M. Ida, R. Kobayashi, Baryon resonances in a quark model. Prog. Theor. Phys. 36, 846 (1966)

    Article  ADS  Google Scholar 

  79. D.B. Lichtenberg, L.J. Tassie, Baryon mass splitting in a boson-fermion model. Phys. Rev. 155, 1601 (1967)

    Article  ADS  Google Scholar 

  80. T.A. DeGrand, C. Rebbi, Radial excitations of hadronic bags. Phys. Rev. D 17, 2358 (1978)

    Article  ADS  Google Scholar 

  81. M. Rosina, B. Golli, The Roper resonance revisited. Fizika B 13, 217 (2004)

    ADS  Google Scholar 

  82. A. De Rujula, H. Georgi, S.L. Glashow, Hadron masses in a gauge theory. Phys. Rev. D 12, 147 (1975)

    Article  ADS  Google Scholar 

  83. G.F. Chew, S.C. Frautschi, Regge trajectories and the principle of maximum strength for strong interactions. Phys. Rev. Lett. 8, 41 (1962)

    Article  ADS  Google Scholar 

  84. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, A new look at scalar mesons. Phys. Rev. Lett. 93, 212002 (2004). arXiv:hep-ph/0407017

    Article  ADS  Google Scholar 

  85. C. Amsler, Non-\(q\bar{q}\) mesons, in [13]

  86. S. Spanier, N.A. Tornqvist, Note on scalar mesons, in [13]

  87. C. Amsler, Further evidence for a large glue component in the f 0(1500) meson. Phys. Lett. B 541, 22 (2002). arXiv:hep-ph/0206104

    Article  ADS  Google Scholar 

  88. F.E. Close, The end of the constituent quark model? AIP Conf. Proc. 717, 919 (2004). arXiv:hep-ph/0311087

    Article  ADS  Google Scholar 

  89. C.W. Bernard et al. (MILC Collaboration), Exotic mesons in quenched lattice QCD. Phys. Rev. D 56, 7039 (1997). arXiv:hep-lat/9707008

    Article  ADS  Google Scholar 

  90. T. Barnes, F.E. Close, F. de Viron, J. Weyers, Q anti-q G hermaphrodite mesons in the MIT bag model. Nucl. Phys. B 224, 241 (1983)

    Article  ADS  Google Scholar 

  91. P. Lacock, C. Michael, P. Boyle, P. Rowland (UKQCD Collaboration), Hybrid mesons from quenched QCD. Phys. Lett. B 401, 308 (1997). arXiv:hep-lat/9611011

    Article  ADS  Google Scholar 

  92. C.G. Callan, R.L. Kingsley, S.B. Treiman, F. Wilczek, A. Zee, Remarks on the new resonances at 3.1-Gev and 3.7-Gev. Phys. Rev. Lett. 34, 52 (1975)

    Article  ADS  Google Scholar 

  93. B.J. Harrington, S.Y. Park, A. Yildiz, The spectra of heavy mesons in e + e annihilation. Phys. Rev. Lett. 34, 168 (1975) [Erratum-ibid. 34, 296 (1975)]

    Article  ADS  Google Scholar 

  94. T. Appelquist, A. De Rujula, H.D. Politzer, S.L. Glashow, Charmonium spectroscopy. Phys. Rev. Lett. 34, 365 (1975)

    Article  ADS  Google Scholar 

  95. E. Eichten, K. Gottfried, T. Kinoshita, J.B. Kogut, K.D. Lane, T.M. Yan, The spectrum of charmonium. Phys. Rev. Lett. 34, 369 (1975) [Erratum-ibid. 36, 1276 (1976)]

    Article  ADS  Google Scholar 

  96. K. Abe et al., Experimental constraints on the possible J PC quantum numbers of the X(3872). arXiv:hep-ex/0505038

  97. A. Abulencia et al. (CDF Collaboration), Analysis of the quantum numbers J PC of the X(3872). Phys. Rev. Lett. 98, 132002 (2007). arXiv:hep-ex/0612053

    Article  ADS  Google Scholar 

  98. T.J. Burns, F. Piccinini, A.D. Polosa, C. Sabelli, The 2−+ assignment for the X(3872). Phys. Rev. D 82, 074003 (2010). arXiv:1008.0018 [hep-ph]

    Article  ADS  Google Scholar 

  99. R. Faccini, F. Piccinini, A. Pilloni, A.D. Polosa, On the spin of the X(3872). Phys. Rev. D 86, 054012 (2012). arXiv:1204.1223 [hep-ph]

    Article  ADS  Google Scholar 

  100. M. Nielsen, F.S. Navarra, S.H. Lee, New charmonium states in QCD sum rules: a concise review. arXiv:0911.1958 [hep-ph]

  101. F.E. Close, P.R. Page, The D ∗0 anti-D 0 threshold resonance. Phys. Lett. B 578, 119 (2004). arXiv:hep-ph/0309253

    Article  ADS  Google Scholar 

  102. S. Godfrey, S.L. Olsen, The exotic XYZ charmonium-like mesons. Annu. Rev. Nucl. Part. Sci. 58, 51 (2008). arXiv:0801.3867 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to Frank Wilczek, who gave me a glimpse into his work on baryon systematics, and in response to my question “what about mesons?” encouraged me to pursue them. This work is the result. I am also grateful to Robert L. Jaffe, Howard Georgi, Richard Brower, Usha Mallik, Hulya Guler, Dan Pirjol, and Ayana Holloway for helpful discussions or comments. This work was supported in part by funds provided by the U.S. Department of Energy (DOE) under cooperative research agreement DE-FC02-94ER40818 and in part by U.S. DOE Grant number DE-FG02-91ER40685.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Friedmann.

Appendices

Appendix A: Nonet by nonet discussion

In this appendix we provide a multiplet by multiplet discussion of the classification.

1.1 A.1 Light mesons

J PC=0−+

We have two 0−+ nonets. Available assignments are an S-wave of \(q\bar{q} \) and a P-wave of \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\). The orbital excitation rule tells us to assign the lower-lying nonet to the S-wave and the second nonet to the P-wave. Other 0−+ are isorons.

We took the η(1475) to be the heavier isosinglet in the second nonet, leaving out the η(1405). Our choice is due to the fact that the heavier isosinglet in any nonet should couple to kaons, and the η(1475) couples to kaons more strongly than η(1405) (see “Note on η(1405)” in [13]).

Note that the second nonet was previously taken to consist of radially excited mesons [13].

J PC=0++

The lightest scalar nonet is \(\mathcal{Q}_{1} \bar{\mathcal{Q}}_{1}\) with L=S=0; an assignment of these mesons to four–quark states was suggested by Jaffe in 1976 [16]; see also [84].

The next nonet is the quark model’s \(q\bar{q}\) P-wave. The choice of isoscalar that would complete this nonet has always been ambiguous [8587]. Following [87], we choose the f 0(1710). The other f 0 mesons are isorons.

The third (partial) nonet has masses around 2 GeV, so by the orbital excitation rule it should be either a D-wave or an F-wave; the only option is a \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\) D-wave.

J PC=1−−

There are three complete or close-to-complete 1−− nonets, and two incomplete nonets which consist of only the isospin triplet (the ρ). Available assignments are 3 S 1 or 3 D 1 of \(q\bar{q}\), 1 P 1 of \(\mathcal{Q}_{1} \bar{\mathcal{Q}}_{1}\), and 1 P 1 or 5 P 1 or 5 F 1 of \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\). By the orbital excitation rule, the lowest-lying nonet, with masses less than 1 GeV, is an S-wave so we assign it to 3 S 1 of \(q\bar{q}\).

The second nonet is about 0.5 GeV heavier, so it is a P-wave of either \(\mathcal{Q}_{1} \bar{\mathcal{Q}}_{1}\) or \(\mathcal{Q}_{2} \bar {\mathcal{Q}}_{2}\). We assign it to 1 P 1 of \(\mathcal{Q}_{1} \bar {\mathcal{Q}}_{1}\), though this choice is rather arbitrary—this nonet could be a mixture of \(\mathcal{Q}_{1} \bar{\mathcal{Q}}_{1}\) and \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\).

The next nonet has only the ρ(1570), which appeared in the PDG for the first time in 2008. It is slightly heavy for a P-wave by the orbital excitation rule, but we still assign it to the P-wave of \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\) because there is a more suitable nonet for the available D-wave assignment; since it is heavy relative to other P-waves, we choose the 5 P 1 rather than the 1 P 1 assignment because it is plausible that higher S may mean higher mass (also see Eq. (26)).

The next nonet, which is about 1 GeV higher than the lightest nonet, is a D-wave by the orbital excitation rule and we assign it to 3 D 1 of \(q\bar{q}\). Another isovector is at the mass range of F-waves, and we assign it to \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\).

Note that the second 1−− nonet was previously taken to consist of radially excited mesons [13].

J PC=1++

There are two nonets. Available assignments are a P-wave of \(q\bar{q}\) and a D-wave of \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\). Using the orbital excitation rule, we assign the lighter nonet to a P-wave and the second nonet to a D-wave.

J PC=1−+

There are no complete nonets here. However, from Table 2 we know that a 1−+ nonet should appear as \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\) in a P-wave. We classify the π 1(1600) and K(1630) as members of this nonet even though it is a bit heavy for a P-wave (we could have taken the π 1(1400), but we opted to make the nonet consist of mesons whose masses are closer together); the π 1(1400) is an isoron. Note that it has been argued [67, 88] that if the 1−+ pion is a four-quark state, then it should be part of a large flavor multiplet, i.e. larger than a nonet. Such a multiplet has not been observed, and in our model it is not expected to be—we expect only nonets in the light flavor sector (Sect. 2.1). See [13, 68, 8991] for more on the 1−+ pions.

J PC=2−+

There are three nonets, and there are three available assignments: a 3 P 2 of \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\), a 1 D 2 of \(q\bar {q}\), and a 3 F 2 of \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\). We assign the lightest nonet to the P-wave (even though it is a bit heavy for a P-wave), the next one to the D-wave, and the last one to the F-wave. Note that the second nonet has so far only the isovector π 2(1880), which in fact entered the PDG only in 2008; if it were not for its appearance, we would have assigned the lightest nonet to the D-wave based on the orbital excitation rule.

J PC=2−−

There are two 2 kaons here. We assign the lighter to a P-wave (though it is a bit heavy based on the orbital excitation rule) and the heavier to a D-wave.

J PC=2++

There are three almost complete nonets. The lightest and heaviest are both \(q\bar{q}\), while the middle one is a \(\mathcal{Q}_{1} \bar {\mathcal{Q}}_{1}\) in a D-wave. The other two have only a single isoscalar in each; they are \(\mathcal{Q}_{2} \bar {\mathcal{Q}}_{2}\) D-waves. The \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2} \) isoscalars and the isoscalars in the middle nonet, all D-waves, could mix.

J PC=3−−

There is one complete nonet, which is the D-wave of \(q\bar{q}\). There are also two heavier isovectors with the same J PC. Of those, the lighter one is below the baryon–antibaryon threshold, so may be \(\mathcal {Q}_{1} \bar{\mathcal{Q}}_{1}\) in an F-wave. The second is above this threshold and therefore is unlikely to have \(\mathcal{Q}_{1}\) as a constituent (see decay properties, p. 10); therefore, we assign it to \(\mathcal{Q}_{2} \bar {\mathcal{Q}}_{2}\) as an F-wave.

J PC=4++

There is one complete nonet in this sector, a \(q\bar{q}\) in an F-wave. An f 4(2300) should be an F-wave by the orbital excitation rule, but there are no available assignments, so it is an isoron.

J PC=5−−

The 5−− nonet could be a G-wave \(q\bar{q}\) or an F-wave \(\mathcal {Q}_{2} \bar{\mathcal{Q}}_{2}\), or a \(\mathcal{Q}_{1} \bar{\mathcal{Q}}_{1}\) with even higher L. By the orbital excitation rule, it should be an F-wave, so we assign it to \(\mathcal{Q}_{2} \bar{\mathcal {Q}}_{2}\). However, it could be a G-wave as classified in the PDG.

J PC=6++

The 6++ has the mass range appropriate for an F-wave or at most a G-wave. The lowest L available for this J PC is a G-wave of \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\), which is our assignment. However, it could also be the H-wave as classified in the PDG.

1.2 A.2 Charmed and bottom mesons

J PC=0−+

There is one complete multiplet and one partial multiplet. Note that the J PC of the bottom mesons in the first multiplet have not been determined experimentally. As is standard, we assign them to S-wave of \(q\bar{q}\).

J PC=0++

Recent suggestions (see [29, 30] for reviews) that \(D_{s0}^{*}(2317)\) may be a tetraquark support the possibility that it completes the \(\mathcal{Q}_{1} \bar{\mathcal{Q}}_{1}\) nonet rather than the \(q\bar{q}\) nonet.

J PC=1−−

Note that since its first appearance in the 1970s, the ψ(2S) was assigned to be a radial excitation [9295]. Until now, this assignment does not seem to have ever been questioned or challenged and is even part of the particle’s name. In our paper, the ψ(2S) is a diquark–antidiquark P-wave (L=1).

J PC=1++

There are two multiplets, one complete and one incomplete. Recent suggestions (see [29, 30] for reviews) that \(D_{s1}^{*}(2460)\) may be a tetraquark support our classification to \(\mathcal{Q}_{2} \bar{\mathcal{Q}}_{2}\) rather than \(q\bar{q}\).

We classify the X(3872) as a member of the \(\mathcal{Q}_{2} \bar {\mathcal{Q}}_{2}\) as well. The J PC=1++ assignment for this particle is favored [96] but 2−+ is also possible [97]; see also [31, 98, 99]. Its isospin has not been determined yet; we listed it only under I=0 in the table, but its decays indicate that it must mix with I=1. See [31, 100102].

Note that we include the new bottom mesons B 1 and B s1; Table 14.3 of the PDG does not include them.

J PC=2++

There is one complete multiplet and one partial one. We include the new \(B_{2}^{*}\) and \(B_{s2}^{*}\) (which do not appear in Table 14.3 of the PDG).

Appendix B: “Exotic” and outcast mesons

We list in Table 5 all the mesons that appear in the 2008 PDG particle listing but are not classified in Tables 14.2 and 14.3 there.Footnote 10 In our model, all these mesons are no longer exotic or outcast but are part of the model and classified in our tables.

Table 5 “Exotic” and Outcast Mesons in the 2008 PDG

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedmann, T. No radial excitations in low energy QCD. I. Diquarks and classification of mesons. Eur. Phys. J. C 73, 2298 (2013). https://doi.org/10.1140/epjc/s10052-013-2298-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2298-9

Keywords

Navigation