Skip to main content
Log in

Constraints on supersymmetry from LHC data on SUSY searches and Higgs bosons combined with cosmology and direct dark matter searches

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The ATLAS and CMS experiments did not find evidence for Supersymmetry using close to 5/fb of published LHC data at a center-of-mass energy of 7 TeV. We combine these LHC data with data on \(B^{0}_{s}\to \mu^{+}\mu^{-}\) (LHCb experiment), the relic density (WMAP and other cosmological data) and upper limits on the dark matter scattering cross sections on nuclei (XENON100 data). The excluded regions in the constrained Minimal Supersymmetric SM (CMSSM) lead to gluinos excluded below 1270 GeV and dark matter candidates below 220 GeV for values of the scalar masses (m 0) below 1500 GeV. For large m 0 values the limits of the gluinos and the dark matter candidate are reduced to 970 GeV and 130 GeV, respectively. If a Higgs mass of 125 GeV is imposed in the fit, the preferred SUSY region is above this excluded region, but the size of the preferred region is strongly dependent on the assumed theoretical error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. 117, 75–263 (1985)

    Article  ADS  Google Scholar 

  2. W. de Boer, Grand unified theories and supersymmetry in particle physics and cosmology. Prog. Part. Nucl. Phys. 33, 201–302 (1994). arXiv:hep-ph/9402266

    Article  ADS  Google Scholar 

  3. S.P. Martin, A supersymmetry primer, in Perspectives on Supersymmetry II, ed. by G. Kane (1997). arXiv:hep-ph/9709356

    Google Scholar 

  4. D. Kazakov, Supersymmetry on the run: LHC and dark matter. Nucl. Phys. B, Proc. Suppl. 203–204, 118–154 (2010). arXiv:1010.5419

    Article  Google Scholar 

  5. E.W. Kolb, M.S. Turner, The early universe. Front. Phys. 69, 1–547 (1990)

    MathSciNet  ADS  Google Scholar 

  6. G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996). arXiv:hep-ph/9506380

    Article  ADS  Google Scholar 

  7. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005). arXiv:hep-ph/0404175

    Article  ADS  Google Scholar 

  8. E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011). arXiv:1001.4538

    Article  ADS  Google Scholar 

  9. O. Buchmueller, R. Cavanaugh, D. Colling et al., Supersymmetry and dark matter in light of LHC 2010 and Xenon100 data. Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529

    Article  ADS  Google Scholar 

  10. O. Buchmueller, R. Cavanaugh, A. De Roeck et al., Supersymmetry in light of 1/fb of LHC data. arXiv:1110.3568

  11. G. Bertone, D. Cerdeno, M. Fornasa et al., Global fits of the cMSSM including the first LHC and XENON100 data. J. Cosmol. Astropart. Phys. 1201, 015 (2012). arXiv:1107.1715

    Article  ADS  Google Scholar 

  12. B. Allanach, Impact of CMS multi-jets and missing energy search on CMSSM fits. Phys. Rev. D 83, 095019 (2011). arXiv:1102.3149

    Article  ADS  Google Scholar 

  13. B. Allanach, T. Khoo, C. Lester et al., The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit. J. High Energy Phys. 1106, 035 (2011). arXiv:1103.0969

    Article  ADS  Google Scholar 

  14. M. Farina, M. Kadastik, D. Pappadopulo et al., Implications of XENON100 and LHC results for dark matter models. Nucl. Phys. B 853, 607–624 (2011). arXiv:1104.3572

    Article  ADS  MATH  Google Scholar 

  15. A. Strumia, Implications of First LHC results. arXiv:1107.1259

  16. S. Akula, D. Feldman, Z. Liu et al., New constraints on dark matter from CMS and ATLAS data. Mod. Phys. Lett. A 26, 1521–1535 (2011). arXiv:1103.5061

    Article  ADS  Google Scholar 

  17. R. Trotta, F. Feroz, M.P. Hobson et al., The impact of priors and observables on parameter inferences in the constrained MSSM. J. High Energy Phys. 0812, 024 (2008). arXiv:0809.3792

    Article  ADS  Google Scholar 

  18. Y. Akrami, P. Scott, J. Edsjo et al., A profile likelihood analysis of the constrained MSSM with genetic algorithms. J. High Energy Phys. 1004, 057 (2010). arXiv:0910.3950

    Article  ADS  Google Scholar 

  19. F. Feroz, B.C. Allanach, M. Hobson et al., Bayesian selection of sign(mu) within mSUGRA in global fits including WMAP5 results. J. High Energy Phys. 0810, 064 (2008). arXiv:0807.4512

    Article  ADS  Google Scholar 

  20. S. Sekmen, S. Kraml, J. Lykken et al., Interpreting LHC SUSY searches in the phenomenological MSSM. arXiv:1109.5119

  21. A.H. Chamseddine, R.L. Arnowitt, P. Nath, Locally supersymmetric grand unification. Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  22. C.F. Kolda, L. Roszkowski, J.D. Wells et al., Predictions for constrained minimal supersymmetry with bottom tau mass unification. Phys. Rev. D 50, 3498–3507 (1994). arXiv:hep-ph/9404253

    Article  ADS  Google Scholar 

  23. W. de Boer, M. Huber, C. Sander et al., A global fit to the anomalous magnetic moment, bX/ and Higgs limits in the constrained MSSM. Phys. Lett. B 515, 283–290 (2001)

    Article  ADS  Google Scholar 

  24. F. Feroz, K. Cranmer, M. Hobson et al., Challenges of profile likelihood evaluation in multi-dimensional SUSY scans. J. High Energy Phys. 1106, 042 (2011). arXiv:1101.3296

    Article  ADS  Google Scholar 

  25. C. Beskidt, W. de Boer, D. Kazakov et al., Constraints from the decay \(B_{s}^{0} \rightarrow; \mu^{+} \mu^{-}\) and LHC limits on supersymmetry. Phys. Lett. B 705, 493–497 (2011). arXiv:1109.6775

    Article  ADS  Google Scholar 

  26. C. Beskidt et al., Constraints on supersymmetry from relic density compared with future Higgs searches at the LHC. Phys. Lett. B 695, 143–148 (2011). arXiv:1008.2150

    Article  ADS  Google Scholar 

  27. http://www.slac.stanford.edu/xorg/hfag/rare/ichep10/radll/OUTPUT/TABLES/radll.pdf Updated August 2010

  28. Muon G-2 Collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035. Summary of E821 Collaboration measurements of the muon anomalous magnetic moment, each reported earlier in Letters or Brief Reports. Revised version submitted to Phys. Rev. D

    Article  Google Scholar 

  29. LHCb collaboration, Strong constraints on the rare decays B s μ + μ and B 0μ + μ . Phys. Rev. Lett. 108, 231801 (2012). arXiv:1203.4493

    Article  Google Scholar 

  30. ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaborations LEP Working Group for Higgs Boson Searches Collaboration, Search for neutral MSSM Higgs bosons at LEP. Eur. Phys. J. C 47, 547–587 (2006). arXiv:hep-ex/0602042

    Article  Google Scholar 

  31. CMS Collaboration, Search for neutral Higgs bosons decaying to tau pairs in pp collisions at sqrt(s)=7 TeV. Phys. Lett. B 713, 68–90 (2012). arXiv:1202.4083

    Article  ADS  Google Scholar 

  32. ATLAS Collaboration, Search for neutral MSSM Higgs bosons decaying to tau tau pairs in proton-proton collisions at 7 TeV with the ATLAS detector. arXiv:1107.5003

  33. ATLAS Collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS Detector in s=7 TeV proton-proton collisions. arXiv:1208.0949

  34. CMS Collaboration, Search for supersymmetry with the razor variables at CMS. CMS-PAS-SUS-12-005, 2012

  35. E. Aprile et al., Dark matter results from 100 live days of XENON100 data. Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549

    Article  ADS  Google Scholar 

  36. F. James, M. Roos, Minuit: A system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975)

    Article  ADS  Google Scholar 

  37. G. Belanger, F. Boudjema, A. Pukhov et al., micrOMEGAs: a tool for dark matter studies. arXiv:1005.4133

  38. A. Pukhov, G. Belanger, F. Boudjema et al., Tools for dark matter in particle and astroparticle physics. PoS ACAT2010, 011 (2010). arXiv:1007.5023

    Google Scholar 

  39. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  40. Particle Data Group Collaboration, Review of particle physics. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  41. CMS Collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at sqrt(s)=7 TeV. Phys. Lett. B 710, 26–48 (2012). arXiv:1202.1488

    Article  ADS  Google Scholar 

  42. ATLAS Collaboration, Combined search for the Standard Model Higgs boson in pp collisions at sqrt(s)=7 TeV with the ATLAS detector. Phys. Rev. D. 86, 032003 (2012). arXiv:1207.0319

    Article  ADS  Google Scholar 

  43. G. Belanger, F. Boudjema, A. Pukhov et al., Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 180, 747–767 (2009). . arXiv:0803.2360

    Article  ADS  MATH  Google Scholar 

  44. J. Cao, K.-i. Hikasa, W. Wang et al., Constraints of dark matter direct detection experiments on the MSSM and implications on LHC Higgs search. Phys. Rev. D 82, 051701 (2010). arXiv:1006.4811

    Article  ADS  Google Scholar 

  45. J.M. Alarcon, J.M. Camalich, J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term. Phys. Rev. D 85, 051503 (2012). arXiv:1110.3797

    Article  ADS  Google Scholar 

  46. M. Weber, W. de Boer, Determination of the local dark matter density in our galaxy. Astron. Astrophys. 509, A25 (2010). arXiv:0910.4272

    Article  ADS  Google Scholar 

  47. W. de Boer, M. Weber, The dark matter density in the solar neighborhood reconsidered. J. Cosmol. Astropart. Phys. 1104, 002 (2011). arXiv:1011.6323

    Article  Google Scholar 

  48. P. Salucci, F. Nesti, G. Gentile, C.F. Martins, The dark matter density at the Sun’s location. Astron. Astrophys. 523, A83 (2010). arXiv:1003.3101

    Article  ADS  Google Scholar 

  49. R. Catena, P. Ullio, A novel determination of the local dark matter density. J. Cosmol. Astropart. Phys. 1008, 004 (2010). arXiv:0907.0018

    Article  ADS  Google Scholar 

  50. S. Heinemeyer, Private communication

  51. U. Ellwanger, C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale. arXiv:1203.5048

  52. Gianotti, for the ATLAS Collaboration, J. Incandela, for the CMS Collaboration, ATLAS-CONF-2012-093, CMS-PAS-HIG-12-020, CERN Seminar, July 4th, 2012; http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html

Download references

Acknowledgements

Support from the Deutsche Forschungsgemeinschaft (DFG) via a Mercator Professorship (Prof. Kazakov) and the Graduiertenkolleg “GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision” is greatly appreciated. Furthermore, support from the Bundesministerium for Bildung und Forschung (BMBF) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. de Boer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beskidt, C., de Boer, W., Kazakov, D.I. et al. Constraints on supersymmetry from LHC data on SUSY searches and Higgs bosons combined with cosmology and direct dark matter searches. Eur. Phys. J. C 72, 2166 (2012). https://doi.org/10.1140/epjc/s10052-012-2166-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2166-z

Keywords

Navigation