Skip to main content
Log in

Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Recently, Kostelecky [V.A. Kostelecky, Phys. Lett. B 701, 137 (2011)] proposed that the spontaneous Lorentz invariance violation (sLIV) is related to Finsler geometry. Finsler spacetime is intrinsically anisotropic and naturally induces Lorentz invariance violation (LIV). In this paper, the electromagnetic field is investigated in locally Minkowski spacetime. The Lagrangian is presented explicitly for the electromagnetic field. It is compatible with the one in the standard model extension (SME). We show the Lorentz-violating Maxwell equations as well as the electromagnetic wave equation. The formal plane wave solution is obtained for the electromagnetic wave. The speed of light may depend on the direction of light and the lightcone may be enlarged or narrowed. The LIV effects could be viewed as influence from an anisotropic media on the electromagnetic wave. In addition, birefringence of light will not emerge at the leading order in this model. A constraint on the spacetime anisotropy is obtained from observations on gamma-ray bursts (GRBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001)

    Article  ADS  MATH  Google Scholar 

  2. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. G. Amelino-Camelia, Nature 418, 34 (2002)

    Article  ADS  Google Scholar 

  4. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  5. J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Alfaro, H.A. Morales-Tecotl, L.F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000)

    Article  ADS  Google Scholar 

  7. J. Alfaro, H.A. Morales-Tecotl, L.F. Urrutia, Phys. Rev. D 65, 103509 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Sudarsky et al., Phys. Rev. D 68, 024010 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Bernabeu, N.E. Mavromatos, S. Sarkar, Phys. Rev. D 74, 045014 (2006)

    Article  ADS  Google Scholar 

  10. A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 97, 021601 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  11. T.G. Pavlopoulos, Phys. Rev. 159, 1106 (1967)

    Article  ADS  Google Scholar 

  12. V.A. Kostelecky, S. Samuel, Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  13. D. Colladay, V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997)

    Article  ADS  Google Scholar 

  14. D. Colladay, V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  15. V.A. Kostelecky, Phys. Lett. B 701, 137 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Rund, The Differential Geometry of Finsler Spaces (Springer, Berlin, 1959)

    Book  MATH  Google Scholar 

  17. D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics, vol. 200 (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  18. Z. Shen, Lectures on Finsler Geometry (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  19. H.C. Wang, J. Lon. Math. Soc. s1-22(1), 5 (1947). doi:10.1112/jlms/s1-22.1.5

    Article  Google Scholar 

  20. S.F. Rutz, Contemp. Math. 169, 289 (1996)

    Article  MathSciNet  Google Scholar 

  21. S. Deng, Z. Hou, Pac. J. Math. 207, 1 (2002)

    Article  MathSciNet  Google Scholar 

  22. X. Li, Z. Chang, arXiv:1010.2020 [gr-qc]

  23. G. Randers, Phys. Rev. 59, 195–199 (1941)

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D 75, 064015 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. G.W. Gibbons, J. Gomis, C.N. Pope, Phys. Rev. D 76, 081701 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Li, Z. Shen, Int. J. Math. 18, 1 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. E.C.G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938)

    MATH  Google Scholar 

  28. E.C.G. Stueckelberg, Helv. Phys. Acta 11, 299 (1938)

    Google Scholar 

  29. M. Cambiaso, R. Lehnert, R. Potting, Phys. Rev. D 85, 085023 (2012)

    Article  ADS  Google Scholar 

  30. V.A. Kostelecky, N. Russell, Rev. Mod. Phys. 83, 11 (2011)

    Article  ADS  Google Scholar 

  31. A. Kostelecky, M. Mewes, Phys. Rev. D 80, 015020 (2009)

    Article  ADS  Google Scholar 

  32. J. Lipa et al., Phys. Rev. Lett. 90, 060403 (2003)

    Article  ADS  Google Scholar 

  33. H. Muller, S. Herrmann, C. Braxmaier, S. Schiller, A. Peters, Phys. Rev. Lett. 91, 020401 (2003)

    Article  ADS  Google Scholar 

  34. P. Wolf et al., Gen. Relativ. Gravit. 36, 2351 (2004)

    Article  ADS  MATH  Google Scholar 

  35. P. Wolf et al., Phys. Rev. D 70, 051902 (2004)

    Article  ADS  Google Scholar 

  36. M.E. Tobar et al., Phys. Rev. D 71, 025004 (2005)

    Article  ADS  Google Scholar 

  37. V.W. Hughes, H.G. Robinson, V. Beltran-Lopez, Phys. Rev. Lett. 4, 342 (1960)

    Article  ADS  Google Scholar 

  38. R.W.P. Drever, Philos. Mag. 6, 683 (1961)

    Article  ADS  Google Scholar 

  39. V.A. Kostelecky, M. Mewes, Phys. Rev. Lett. 87, 251304 (2001)

    Article  ADS  Google Scholar 

  40. V.A. Kostelecky, M. Mewes, Phys. Rev. D 66, 056005 (2002)

    Article  ADS  Google Scholar 

  41. R. Bluhm, Lect. Notes Phys. 702, 191 (2006)

    Article  Google Scholar 

  42. Z. Chang, X. Li, S. Wang, Mod. Phys. Lett. A 27, 1250058 (2012)

    Article  ADS  Google Scholar 

  43. Z. Chang, X. Li, S. Wang, Phys. Lett. B 710, 430 (2012)

    Article  ADS  Google Scholar 

  44. Z. Chang, X. Li, S. Wang, arXiv:1201.1368

  45. A.A. Abdo et al., Science 323, 1688 (2009)

    Article  ADS  Google Scholar 

  46. A.A. Abdo et al., Astrophys. J. 706, L138 (2009)

    Article  ADS  Google Scholar 

  47. A.A. Abdo et al., Nature 462, 331 (2009)

    Article  ADS  Google Scholar 

  48. M. Ackermann et al., Astrophys. J. 729, 114 (2011)

    Article  ADS  Google Scholar 

  49. Z. Chang, Y. Jiang, H.-N. Lin, Astropart. Phys. arXiv:1201.3413. doi:10.1016/j.astropartphys.2012.04.006

  50. Z. Bosnjak, P. Kumar, Mon. Not. R. Astron. Soc. (2012). doi:10.1111/j.1745-3933.2011.01202.x

    Google Scholar 

  51. R.J. Nemiroff, J. Holmes, R. Connolly, arXiv:1109.5191

  52. U. Jacob, T. Piran, J. Cosmol. Astropart. Phys. 01, 031 (2008)

    Article  ADS  Google Scholar 

  53. L. Shao, Z. Xiao, B.-Q. Ma, Astropart. Phys. 33, 312 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank useful discussions with Yunguo Jiang, Ming-Hua Li, Xin Li, Hai-Nan Lin. The author (S. Wang) thanks useful discussions with Jian-Ping Dai, Dan-Ning Li, and Xiao-Gang Wu. This work is supported by the National Natural Science Fund of China under Grant No. 11075166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Z., Wang, S. Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime. Eur. Phys. J. C 72, 2165 (2012). https://doi.org/10.1140/epjc/s10052-012-2165-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2165-0

Keywords

Navigation