Skip to main content
Log in

Bremsstrahlung simulation in Kπl ± ν l (γ) decays

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In physics simulation chains, the PHOTOS Monte Carlo program is often used to simulate QED effects in decays of intermediate particles and resonances.

The program is based on an exact multiphoton phase space. In general, the matrix element is obtained from iterations of a universal kernel and approximations are involved. To evaluate the program’s precision, it is necessary to formulate and implement within the generator the exact matrix element, which depends on the decay channel. Then, all terms necessary for non-leading logarithms are taken into account. In the present letter we focus on the decay Kπl ± ν l and tests of the PHOTOS Monte Carlo program. We conclude that there is a 0.2 % relative precision in the implementation of the hard photon matrix element into the emission kernel, including the case where approximations are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Parametrization of phase space in PHOTOS is explicit and exact, if the presampler for collinear emissions is used only along a single charge. Otherwise, starting from the moment when the photon is supposed to be added to a more than two-body configuration, an approximation appears when the phase space Jacobians for the multitude of branches are combined. This can be improved, but for test cases with second order matrix elements in Z decay [9], we have found that this approximation is necessary, unless complete double photon emission amplitude would be installed into the program at the same time.

  2. Expression (8) coincides also with the similar term (19) discussed later in the amplitude of the K 0π l ± ν l decay.

  3. The first term can be obtained from formula (27, 28, 29) with the help of the change of variables

    (31)
  4. But then, no gain beyond Konoshita–Lee–Nauenberg can be achieved. In K e3 decay there is no Coulomb effect.

  5. TAUOLA semileptonic decay channel offer an alternative crude phase space generator for radiative corrections, which may become useful in the future, especially if complete virtual corrections are to be included and studied.

  6. The distributions of Lorentz invariants constructed from outgoing particles are shown. Additional information is available on plots of the web-page [23]. The SDP (shape difference parameter) obtained from MC-TESTER represents an exclusive surface (normalized to unity) under the green and red distributions. The statistical error (calculated in a rather simplified way) is subtracted from this difference. The black line is the ratio of the distributions.

References

  1. M. Antonelli, V. Cirigliano, G. Isidori, F. Mescia, M. Moulson et al., Eur. Phys. J. C 69, 399 (2010)

    Article  ADS  Google Scholar 

  2. S. Actis et al., Eur. Phys. J. C 66, 585 (2010)

    Article  Google Scholar 

  3. D.R. Yennie, S. Frautschi, H. Suura, Ann. Phys. (NY) 13, 379 (1961)

    Article  ADS  Google Scholar 

  4. S. Jadach, B.F.L. Ward, Phys. Rev. D 38, 2897 (1988)

    Article  ADS  Google Scholar 

  5. S. Jadach, Z. Wa̧s, B.F.L. Ward, Comput. Phys. Commun. 130, 260 (2000). Up to date source available from http://home.cern.ch/jadach/

    Article  ADS  MATH  Google Scholar 

  6. E. Barberio, B. van Eijk, Z. Wa̧s, Comput. Phys. Commun. 66, 115 (1991)

    Article  ADS  MATH  Google Scholar 

  7. E. Barberio, Z. Wa̧s, Comput. Phys. Commun. 79, 291 (1994)

    Article  ADS  Google Scholar 

  8. P. Golonka, Z. Was, Eur. Phys. J. C 45, 97 (2006)

    Article  ADS  Google Scholar 

  9. P. Golonka, Z. Was, Eur. Phys. J. C 50, 53 (2007)

    Article  ADS  Google Scholar 

  10. G. Nanava, Z. Was, Eur. Phys. J. C 51, 569 (2007)

    Article  ADS  Google Scholar 

  11. G. Nanava, Q. Xu, Z. Was, Eur. Phys. J. C 70, 673 (2010)

    Article  ADS  Google Scholar 

  12. N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Was, Z. Was, Comput. Phys. Commun. 183, 821 (2012)

    Article  ADS  Google Scholar 

  13. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Boulder, Westview, 1995)

    Google Scholar 

  14. S. Weinberg, Physica A 96, 327 (1979). Festschrift honoring Julian Schwinger on his 60th birthday

    Article  ADS  Google Scholar 

  15. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Leutwyler, Ann. Phys. 235, 165 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  17. V. Cirigliano, M. Giannotti, H. Neufeld, J. High Energy Phys. 0811, 006 (2008)

    Article  ADS  Google Scholar 

  18. V. Cirigliano, in PoS (KAON), 007 (2008)

    Google Scholar 

  19. Y. Bystritskiy, S. Gevorkyan, E. Kuraev, Eur. Phys. J. C 64, 47 (2009)

    Article  ADS  Google Scholar 

  20. M. Jeżabek, Z. Wa̧s, S. Jadach, J.H. Kühn, Comput. Phys. Commun. 70, 69 (1992)

    Article  ADS  Google Scholar 

  21. P. Golonka, T. Pierzchala, Z. Was, Comput. Phys. Commun. 157, 39 (2004)

    Article  ADS  MATH  Google Scholar 

  22. N. Davidson, P. Golonka, T. Przedzinski, Z. Was, Comput. Phys. Commun. 182, 779 (2011)

    Article  ADS  MATH  Google Scholar 

  23. Projects 2011/12 on http://wasm.web.cern.ch/wasm/ or http://hibiscus.if.uj.edu.pl/~przedzinski/Kl3/

  24. Particle Data Group Collaboration, K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  25. J.R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C 50, 329 (2007). [Erratum-ibid. C 52, 1021 (2007)], hep-ex/0702015

    Article  ADS  Google Scholar 

  26. N. Davidson, T. Przedzinski, Z. Was, PHOTOS interface in C++: technical and physics documentation. arXiv:1011.0937 [hep-ph]

Download references

Acknowledgements

We would like to thank Tomasz Przedzinski for help in obtaining the numerical results presented in this paper and Brigitte Bloch-Devaux for help in improving the paper readability. We would like to thank the referee of EPJC for identifying an error in our handling of formula (14) of Ref. [17].

Work of Q. Xu is supported by China–Poland inter-governmental cooperation grant 34-13, National Natural Science Foundation of China under Grant No. 11147023, and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ12A05003.

Work of ZW is supported in part by the Polish Ministry of Science and Higher Education grant No. 1289/B/H03/2009/37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Was, Z. Bremsstrahlung simulation in Kπl ± ν l (γ) decays. Eur. Phys. J. C 72, 2158 (2012). https://doi.org/10.1140/epjc/s10052-012-2158-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2158-z

Keywords

Navigation