Skip to main content
Log in

Condensation of an ideal gas with intermediate statistics on the horizon

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider a boson gas on the stretched horizon of the Schwartzschild and Kerr black holes. It is shown that the gas is in a Bose–Einstein condensed state with the Hawking temperature T c =T H if the particle number of the system be equal to the number of quantum bits of space-time \(N \simeq{A}/{l_{p}^{2}}\). Entropy of the gas is proportional to the area of the horizon (A) by construction. For a more realistic model of quantum degrees of freedom on the horizon, we should presumably consider interacting bosons (gravitons). An ideal gas with intermediate statistics could be considered as an effective theory for interacting bosons. This analysis shows that we may obtain a correct entropy just by a suitable choice of parameter in the intermediate statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Phys. Rev. Lett. 26, 1344 (1971)

    Article  ADS  Google Scholar 

  2. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  4. S.W. Hawking, Nature 248, 5443 (1974)

    Article  Google Scholar 

  5. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  6. S.W. Hawking, Phys. Rev. D 14, 2460 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Strominger, C. Vafa, Phys. Lett. B 379, 2460 (1996)

    MathSciNet  Google Scholar 

  8. C. Rovelli, Phys. Rev. Lett. 77, 3288 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. Ashtekar, A. Corichi, K. Krasnov, Adv. Theor. Math. Phys. 3, 419 (2000)

    MathSciNet  Google Scholar 

  10. A. Ashtekar, J. Baez, K. Krasnov, Adv. Theor. Math. Phys. 4, 1 (2000)

    MathSciNet  MATH  Google Scholar 

  11. G. ’t Hooft, Nucl. Phys. B 256, 727 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Susskind, Phys. Rev. D 49, 6606 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  13. L. Susskind, Phys. Rev. Lett. 71, 2367 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. W.H. Zurek, K.S. Thorne, Phys. Rev. Lett. 54, 2171 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  15. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, Phys. Rev. D 34, 373 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. C. Callan, F. Wilczek, Phys. Lett. B 333, 55 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  18. U.H. Gerlach, Phys. Rev. D 14, 1479 (1976)

    Article  ADS  Google Scholar 

  19. J.W. York, Phys. Rev. D 28, 2929 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  20. K.S. Thorne, R.H. Price, D.A. Macdonald, Black Holes: The Membrane Paradigm (Yale University Press, New Haven, 1986)

    Google Scholar 

  21. L. Susskind, L. Thorlacius, J. Uglum, Phys. Rev. D 48, 3743 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Iizuka, D. Kabat, G. Lifschitz, D.A. Lowe, Phys. Rev. D 68, 084021 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Singh, R.K. Pathria, J. Phys. A 17, 2983 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  24. L. Parker, Y. Zhang, Phys. Rev. D 44, 2421 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  25. D.J. Toms, Phys. Rev. Lett. 69, 1152 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. D.J. Toms, Phys. Rev. D 47, 2483 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  27. X. Li, Z. Zhao, Phys. Rev. D 62, 104001 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  28. A.M. Scarfone, P. Narayana Swamy, J. Phys. A, Math. Theor. 41, 275211 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. A.M. Scarfone, P. Narayana Swamy, J. Stat. Mech. P02055 (2009)

  30. D.V. Anghel, Fractional exclusion statistics—the method to describe interacting particle systems as ideal gas. arXiv:1207.6534

  31. B. Mirza, H. Mohammadzadeh, Phys. Rev. E 82, 031137 (2010)

    Article  ADS  Google Scholar 

  32. B. Mirza, H. Mohammadzadeh, J. Phys. A, Math. Theor. 44, 475003 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. G. ’t Hooft, Dimensional reduction in quantum gravity. gr-qc/9310026

  34. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. T. Padmanabhan, Phys. Rev. D 81, 124040 (2010)

    Article  ADS  Google Scholar 

  36. E. Verlinde, J. High Energy Phys. 1104, 029 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Kolekar, T. Padmanabhan, Phys. Rev. D 83, 064034 (2011)

    Article  ADS  Google Scholar 

  38. R.K. Pathria, Statistical Mechanics (Elsevier, Amsterdam, 2005)

    Google Scholar 

  39. R. Hakim, Introduction to Relativistic Statistical Mechanics (World Scientific, Singapore, 2011)

    Book  MATH  Google Scholar 

  40. S. Hod, Phys. Lett. B 695, 294 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  41. W. Israel, S. Mukohyama, Phys. Rev. D 58, 104005 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Zhao, L. Zhang, H. Li, Y. Wu, Int. J. Theor. Phys. 47, 3083 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. F.D.M. Haldane, Phys. Rev. Lett. 67, 937 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. G. Gentile, Nuovo Cimento 19, 109 (1942)

    Article  Google Scholar 

  45. A.P. Polychronakos, Phys. Lett. B 365, 202 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  46. C.R. Lee, J.P. Yu, Phys. Lett. A 150, 63 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  47. Y.J. Ng, J. Phys. A 23, 1023 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. M. Chaichian, R. Gozales Felipe, C. Montonen, J. Phys. A 26, 4017 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  49. J.A. Tuszyński, J.L. Rubin, J. Meyer, K. Kibler, Phys. Lett. A 175, 173 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Lavagno, P. Narayana Swamy, Phys. Rev. E 65, 036101 (2002)

    Article  ADS  Google Scholar 

  51. Y. Tian, X.-N. Wu, J. High Energy Phys. 01, 150 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  52. Y.-X. Liu, Y.-Q. Wang, S.-W. Wei, Class. Quantum Gravity 27, 185002 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  53. R.A. Konoplya, Eur. Phys. J. C 69, 555 (2010)

    Article  ADS  Google Scholar 

  54. Y. Tian, X.-N. Wu, Phys. Rev. D 81, 104013 (2010)

    Article  ADS  Google Scholar 

  55. Y.-X. Chen, J.-L. Li, Phys. Lett. B 700, 380 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  56. R.B. Mann, J.R. Mureika, Phys. Lett. B 703, 167 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  57. M. Visser, Conservative entropic forces. arXiv:1108.5240

  58. R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984)

    MATH  Google Scholar 

  59. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. R.B. Mann, S.N. Solodukhin, Nucl. Phys. B 523, 293–307 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. M. Schiffer, J. Bekenstein, Phys. Rev. D 42, 3598 (1990)

    Article  ADS  Google Scholar 

  62. A. Ghosh, P. Mitra, Phys. Rev. Lett. 73, 2521 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. D. Fursaev, Phys. Rev. D 51, 5352 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  64. R. Emparan, J. High Energy Phys. 9906, 036 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  65. S. Carlip, Nucl. Phys. Proc. Suppl. 88, 10 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  66. A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions. arXiv:1205.0971

  67. Y. Sekino, L. Susskind, J. High Energy Phys. 0810, 065 (2008)

    Article  ADS  Google Scholar 

  68. C. Vaz, L.C.R. Wijewardhana, Class. Quantum Gravity 27, 055009 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  69. G. Dvali, C. Gomez, Black holes as critical point of quantum phase transition. arXiv:1207.4059

Download references

Acknowledgements

We would like to thank R. Casadio for useful comments. This work has been supported financially by the Research Institute for Astronomy and Astrophysics of Maragha (RIAAM) under research project No. 1/2359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Mohammadzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zare, S., Raissi, Z., Mohammadzadeh, H. et al. Condensation of an ideal gas with intermediate statistics on the horizon. Eur. Phys. J. C 72, 2152 (2012). https://doi.org/10.1140/epjc/s10052-012-2152-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2152-5

Keywords

Navigation