Skip to main content
Log in

Flavor and LHC searches for new physics

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Uncovering the physics of electroweak symmetry breaking (EWSB) is the raison-d’etre of the LHC. Flavor questions, it would seem, are of minor relevance for this quest, apart from their role in constraining the possible structure of EWSB physics. In this short review article, we outline, using flavor-dependent slepton physics as an example, how flavor can affect both searches for supersymmetry, and future measurements aimed at understanding the nature of any new discoveries. If the production cross-sections for supersymmetry are relatively low, as indicated by the fact that it has not revealed itself yet in standard searches, the usual assumptions about the superpartner spectra need rethinking. Furthermore, one must consider more intricate searches, such as lepton-based searches, which could be susceptible to flavor effects. We start by reviewing the flavor structure of existing frameworks for mediating supersymmetry breaking, emphasizing flavor-dependent models proposed recently. We use the kinematic endpoints of invariant mass distributions to demonstrate how flavor dependence can impact both searches for supersymmetry and the Inverse Problem. We also discuss methods for measuring small-mass splittings and mixings at the LHC, both in models with a neutralino LSP and in models with a charged slepton (N)LSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The term “flavor” is somewhat vague, and often redundant, since it can usually be replaced by “generation.” The matter fields of the SM carry both gauge indices and generation indices. The latter are often called flavor indices. Flavor-dependence simply means generation dependence, and flavor parameters refer to the generation-dependent parameters of the SM.

  2. For a review of EDM bounds on CP-violating phases, see the article by B. Batell in this chapter.

  3. To better understand these points, one should examine the structure of FV diagrams. See for example Eq. (20) of [17].

  4. Some of these are actual models, with a well-defined mechanism for generating the soft terms and controlling their structure. Others are simply ansatze, which may have some concrete realization(s).

  5. These models have additional features that contribute to the suppression of FV processes, including the absence of A terms and the Dirac nature of the gauginos (see items 5, 6 above).

  6. In gravity-mediated models, without additional ingredients, the scalar mass matrices could be arbitrary, so that bounds on FV are not satisfied.

  7. SU(3) L is further broken by the neutrino masses. Here, for simplicity, we will neglect the spurions associated with the neutrinos. This is justified if the seesaw scale is higher than the mediation scale. We can then take the charged lepton Yukawa to be a diagonal matrix without loss of generality.

  8. As mentioned above, AMSB is not universal but MFV.

  9. These small mixings are a generic result of the flavor symmetry.

  10. Flavor-dependent squark spectra and their impact on LHC searches were discussed for example in [3638].

  11. The dilepton-invariant mass distribution is an important tool for measuring superpartner masses and we will return to it in Sects. 4 and 5. For now, however, we are mainly interested in it at the level of the discovery potential for SUSY.

  12. For early work on the collider signatures of generation-dependent sleptons, focused on lepton flavor violation, see, e.g., [5660].

  13. Here and in the following we assume that the mass splitting is much bigger than the slepton decay width. The effect of non-zero width was studied in detail in [61].

  14. Apart from [70], these techniques rely on the low slepton speed. Sleptons produced in the decay of heavier particles can have large boosts, and therefore look like fake muons. Such sleptons may be detected by looking for a peak in the muon-lepton-invariant mass distribution [71].

References

  1. G. D’Ambrosio, G. Giudice, G. Isidori, A. Strumia, Minimal flavor violation: An effective field theory approach. Nucl. Phys. B 645, 155–187 (2002). arXiv:hep-ph/0207036

    Article  ADS  Google Scholar 

  2. J.L. Feng, K.T. Matchev, T. Moroi, Focus points and naturalness in supersymmetry. Phys. Rev. D 61, 075005 (2000). arXiv:hep-ph/9909334

    Article  ADS  Google Scholar 

  3. G. Giudice, A. Romanino, Split supersymmetry. Nucl. Phys. B 699, 65–89 (2004). arXiv:hep-ph/0406088

    Article  ADS  MATH  Google Scholar 

  4. N. Arkani-Hamed, S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC. J. High Energy Phys. 0506, 073 (2005). arXiv:hep-th/0405159

    Article  ADS  Google Scholar 

  5. G. Isidori, Y. Nir, G. Perez, Flavor physics constraints for physics beyond the standard model. Annu. Rev. Nucl. Part. Sci. 60, 355 (2010). arXiv:1002.0900 [hep-ph]

    Article  ADS  Google Scholar 

  6. A.G. Cohen, D. Kaplan, A. Nelson, The More minimal supersymmetric standard model. Phys. Lett. B 388, 588–598 (1996). arXiv:hep-ph/9607394

    Article  ADS  Google Scholar 

  7. G. Dvali, A. Pomarol, Anomalous U(1) as a mediator of supersymmetry breaking. Phys. Rev. Lett. 77, 3728–3731 (1996). arXiv:hep-ph/9607383

    Article  ADS  Google Scholar 

  8. J.L. Feng, C.G. Lester, Y. Nir, Y. Shadmi, The standard model and supersymmetric flavor puzzles at the large hadron collider. Phys. Rev. D 77, 076002 (2008). arXiv:0712.0674 [hep-ph]

    Article  ADS  Google Scholar 

  9. Y. Nomura, D. Stolarski, Naturally flavorful supersymmetry at the LHC. Phys. Rev. D 78, 095011 (2008). arXiv:0808.1380 [hep-ph]

    Article  ADS  Google Scholar 

  10. G.D. Kribs, E. Poppitz, N. Weiner, Flavor in supersymmetry with an extended R-symmetry. Phys. Rev. D 78, 055010 (2008). arXiv:0712.2039 [hep-ph]

    Article  ADS  Google Scholar 

  11. H. Baer, S. Kraml, A. Lessa, S. Sekmen, X. Tata, Effective supersymmetry at the LHC. J. High Energy Phys. 1010, 018 (2010). arXiv:1007.3897 [hep-ph]

    Article  ADS  Google Scholar 

  12. C. Brust, A. Katz, S. Lawrence, R. Sundrum, SUSY, the third generation and the LHC. arXiv:1110.6670 [hep-ph]

  13. J.L. Feng, M.E. Peskin, H. Murayama, X.R. Tata, Testing supersymmetry at the next linear collider. Phys. Rev. D 52, 1418–1432 (1995). arXiv:hep-ph/9502260

    Article  ADS  Google Scholar 

  14. N. Arkani-Hamed, G.L. Kane, J. Thaler, L.-T. Wang, Supersymmetry and the LHC inverse problem. J. High Energy Phys. 08, 070 (2006). arXiv:hep-ph/0512190

    Article  MathSciNet  ADS  Google Scholar 

  15. J.L. Feng, Y. Nir, Y. Shadmi, Neutrino parameters, Abelian flavor symmetries, and charged lepton flavor violation. Phys. Rev. D 61, 113005 (2000). arXiv:hep-ph/9911370

    Article  ADS  Google Scholar 

  16. F. Gabbiani, E. Gabrielli, A. Masiero, L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model. Nucl. Phys. B 477, 321–352 (1996). arXiv:hep-ph/9604387

    Article  ADS  Google Scholar 

  17. J.L. Feng, K.T. Matchev, Y. Shadmi, Theoretical expectations for the muon’s electric dipole moment. Nucl. Phys. B 613, 366–381 (2001). arXiv:hep-ph/0107182

    Article  ADS  Google Scholar 

  18. P.J. Fox, A.E. Nelson, N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking. J. High Energy Phys. 0208, 035 (2002). arXiv:hep-ph/0206096

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Fok, G.D. Kribs, mu to e in R-symmetric supersymmetry. Phys. Rev. D 82, 035010 (2010). arXiv:1004.0556 [hep-ph]

    Article  ADS  Google Scholar 

  20. M. Dine, A.E. Nelson, Y. Shirman, Low-energy dynamical supersymmetry breaking simplified. Phys. Rev. D 51, 1362–1370 (1995). arXiv:hep-ph/9408384

    Article  ADS  Google Scholar 

  21. M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, New tools for low-energy dynamical supersymmetry breaking. Phys. Rev. D 53, 2658–2669 (1996). arXiv:hep-ph/9507378

    Article  ADS  Google Scholar 

  22. Z. Chacko, M.A. Luty, A.E. Nelson, E. Ponton, Gaugino mediated supersymmetry breaking. J. High Energy Phys. 0001, 003 (2000). arXiv:hep-ph/9911323

    Article  ADS  Google Scholar 

  23. D. Kaplan, G.D. Kribs, M. Schmaltz, Supersymmetry breaking through transparent extra dimensions. Phys. Rev. D 62, 035010 (2000). arXiv:hep-ph/9911293

    Article  ADS  Google Scholar 

  24. L. Randall, R. Sundrum, Out of this world supersymmetry breaking. Nucl. Phys. B 557, 79–118 (1999). arXiv:hep-th/9810155

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Y. Nir, N. Seiberg, Should squarks be degenerate? Phys. Lett. B 309, 337–343 (1993). arXiv:hep-ph/9304307

    Article  ADS  Google Scholar 

  26. C. Froggatt, H.B. Nielsen, Hierarchy of quark masses, cabibbo angles and CP violation. Nucl. Phys. B 147, 277 (1979)

    Article  ADS  Google Scholar 

  27. A.E. Nelson, M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem. J. High Energy Phys. 0207, 021 (2002). arXiv:hep-ph/0104051

    Article  MathSciNet  ADS  Google Scholar 

  28. Y. Nomura, M. Papucci, D. Stolarski, Flavorful supersymmetry. Phys. Rev. D 77, 075006 (2008). arXiv:0712.2074 [hep-ph]

    Article  ADS  Google Scholar 

  29. Y. Shadmi, P.Z. Szabo, Flavored gauge-mediation. arXiv:1103.0292 [hep-ph]

  30. C. Gross, G. Hiller, Flavorful hybrid anomaly-gravity mediation. arXiv:1101.5352 [hep-ph]

  31. N. Arkani-Hamed, M. Schmaltz, Hierarchies without symmetries from extra dimensions. Phys. Rev. D 61, 033005 (2000). arXiv:hep-ph/9903417

    Article  ADS  Google Scholar 

  32. T. Gherghetta, A. Pomarol, Bulk fields and supersymmetry in a slice of AdS. Nucl. Phys. B 586, 141–162 (2000). arXiv:hep-ph/0003129

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. D.E. Kaplan, T.M. Tait, Supersymmetry breaking, fermion masses and a small extra dimension. J. High Energy Phys. 0006, 020 (2000). arXiv:hep-ph/0004200

    Article  MathSciNet  ADS  Google Scholar 

  34. D.E. Kaplan, T.M. Tait, New tools for fermion masses from extra dimensions. J. High Energy Phys. 0111, 051 (2001). arXiv:hep-ph/0110126

    Article  ADS  Google Scholar 

  35. F. Brummer, S. Fichet, S. Kraml, The supersymmetric flavour problem in 5D GUTs and its consequences for LHC phenomenology. arXiv:1109.1226 [hep-ph]

  36. T. Hurth, S. Kraml, Interplay of direct and indirect searches for new physics. arXiv:1110.3804 [hep-ph]

  37. T. Hurth, W. Porod, Nondiagonal flavor observables in B and collider physics. Eur. Phys. J. C 33, S764–S766 (2004). arXiv:hep-ph/0311075

    Article  ADS  Google Scholar 

  38. G.F. Giudice, B. Gripaios, R. Sundrum, Flavourful production at hadron colliders. J. High Energy Phys. 1108, 055 (2011). arXiv:1105.3161 [hep-ph]

    Article  ADS  Google Scholar 

  39. J. Eckel, W. Shepherd, S. Su, Slepton discovery in electroweak cascade decay. arXiv:1111.2615 [hep-ph]

  40. G. Aad et al. (ATLAS Collaboration), Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in sqrts=7 TeV proton-proton collisions. arXiv:1110.6189 [hep-ex]

  41. CMS Collaboration, Search for new physics in events with opposite-sign dileptons and missing transverse energy. CMS-PAS-SUS-11-011

  42. I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist, W. Yao, Precision SUSY measurements at CERN LHC. Phys. Rev. D 55, 5520–5540 (1997). arXiv:hep-ph/9610544

    Article  ADS  Google Scholar 

  43. H. Bachacou, I. Hinchliffe, F.E. Paige, Measurements of masses in SUGRA models at CERN LHC. Phys. Rev. D 62, 015009 (2000). arXiv:hep-ph/9907518

    Article  ADS  Google Scholar 

  44. B. Gjelsten, D.J. Miller, P. Osland, Measurement of SUSY masses via cascade decays for SPS 1a. J. High Energy Phys. 0412, 003 (2004). arXiv:hep-ph/0410303

    Article  ADS  Google Scholar 

  45. C.G. Lester, M.A. Parker, M.J. White, Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables. J. High Energy Phys. 0601, 080 (2006). arXiv:hep-ph/0508143

    Article  ADS  Google Scholar 

  46. C. Lester, M.A. Parker, M.J. White, Three body kinematic endpoints in SUSY models with non-universal Higgs masses. J. High Energy Phys. 0710, 051 (2007). arXiv:hep-ph/0609298

    Article  ADS  Google Scholar 

  47. A.J. Barr, B. Gripaios, C.G. Lester, Weighing wimps with kinks at colliders: invisible particle mass measurements from endpoints. J. High Energy Phys. 0802, 014 (2008). arXiv:0711.4008 [hep-ph]

    Article  ADS  Google Scholar 

  48. C. Autermann, B. Mura, C. Sander, H. Schettler, P. Schleper, Determination of supersymmetric masses using kinematic fits at the LHC. arXiv:0911.2607 [hep-ph]

  49. B. Allanach, J. Conlon, C. Lester, Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking. Phys. Rev. D 77, 076006 (2008). arXiv:0801.3666 [hep-ph]

    Article  ADS  Google Scholar 

  50. I. Galon, Y. Shadmi, Kinematic edges with flavor splitting and mixing. arXiv:1108.2220 [hep-ph]

  51. T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Bounds on universal extra dimensions. Phys. Rev. D 64, 035002 (2001). arXiv:hep-ph/0012100

    Article  ADS  Google Scholar 

  52. H.-C. Cheng, K.T. Matchev, M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC. Phys. Rev. D 66, 056006 (2002). arXiv:hep-ph/0205314

    Article  ADS  Google Scholar 

  53. J.M. Smillie, B.R. Webber, Distinguishing spins in supersymmetric and universal extra dimension models at the large hadron collider. J. High Energy Phys. 10, 069 (2005). arXiv:hep-ph/0507170

    Article  ADS  Google Scholar 

  54. C. Athanasiou, C.G. Lester, J.M. Smillie, B.R. Webber, Distinguishing spins in decay chains at the large hadron collider. J. High Energy Phys. 0608, 055 (2006). arXiv:hep-ph/0605286

    Article  ADS  Google Scholar 

  55. L.-T. Wang, I. Yavin, A review of spin determination at the LHC. Int. J. Mod. Phys. A 23, 4647–4668 (2008). arXiv:0802.2726 [hep-ph]

    Article  ADS  Google Scholar 

  56. N. Arkani-Hamed, H.-C. Cheng, J.L. Feng, L.J. Hall, Probing lepton flavor violation at future colliders. Phys. Rev. Lett. 77, 1937–1940 (1996). arXiv:hep-ph/9603431

    Article  ADS  Google Scholar 

  57. N. Arkani-Hamed, J.L. Feng, L.J. Hall, H.-C. Cheng, CP violation from slepton oscillations at the LHC and NLC. Nucl. Phys. B 505, 3–39 (1997). arXiv:hep-ph/9704205

    Article  ADS  Google Scholar 

  58. K. Agashe, M. Graesser, Signals of supersymmetric lepton flavor violation at the LHC. Phys. Rev. D 61, 075008 (2000). arXiv:hep-ph/9904422

    Article  ADS  Google Scholar 

  59. J. Hisano, R. Kitano, M.M. Nojiri, Slepton oscillation at large hadron collider. Phys. Rev. D 65, 116002 (2002). arXiv:hep-ph/0202129

    Article  ADS  Google Scholar 

  60. A. Bartl, K. Hidaka, K. Hohenwarter-Sodek, T. Kernreiter, W. Majerotto et al., Test of lepton flavor violation at LHC. Eur. Phys. J. C 46, 783–789 (2006). arXiv:hep-ph/0510074

    Article  ADS  Google Scholar 

  61. Y. Grossman, M. Martone, D.J. Robinson, Kinematic edges with flavor oscillation and non-zero widths. J. High Energy Phys. 1110, 127 (2011). arXiv:1108.5381 [hep-ph]

    Article  ADS  Google Scholar 

  62. A.J. Buras, L. Calibbi, P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC. J. High Energy Phys. 1006, 042 (2010). arXiv:0912.1309 [hep-ph]

    Article  ADS  Google Scholar 

  63. J.L. Feng, T. Moroi, Tevatron signatures of longlived charged sleptons in gauge mediated supersymmetry breaking models. Phys. Rev. D 58, 035001 (1998). arXiv:hep-ph/9712499

    Article  ADS  Google Scholar 

  64. J.L. Feng, A. Rajaraman, F. Takayama, Superweakly interacting massive particles. Phys. Rev. Lett. 91, 011302 (2003). arXiv:hep-ph/0302215

    Article  ADS  Google Scholar 

  65. A. Nisati, S. Petrarca, G. Salvini, On the possible detection of massive stable exotic particles at the LHC. Mod. Phys. Lett. A 12, 2213–2222 (1997). arXiv:hep-ph/9707376

    Article  ADS  Google Scholar 

  66. A. Connolly (CDF Collaboration), Search for longlived charged massive particles at CDF. arXiv:hep-ex/9904010

  67. S. Tarem, S. Bressler, H. Nomoto, A. Di Mattia, Trigger and reconstruction for heavy long-lived charged particles with the ATLAS detector. Eur. Phys. J. C 62, 281–292 (2009)

    Article  ADS  Google Scholar 

  68. G. Aad et al. (ATLAS Collaboration), Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at \(\mathrm{sqrt(s)} = 7~\mathrm{TeV}\). Phys. Lett. B 703, 428–446 (2011). arXiv:1106.4495 [hep-ex]

    Article  ADS  Google Scholar 

  69. V. Khachatryan et al. (CMS Collaboration), Search for heavy stable charged particles in pp collisions at \(\mathrm{sqrt(s)}=7~\mathrm{TeV}\). J. High Energy Phys. 1103, 024 (2011). arXiv:1101.1645 [hep-ex]

    Article  ADS  Google Scholar 

  70. J. Chen, T. Adams, Searching for high speed long-lived charged massive particles at the LHC. Eur. Phys. J. C 67, 335–342 (2010). arXiv:0909.3157 [hep-ph]

    Article  ADS  Google Scholar 

  71. I. Galon, Y. Shadmi, S. Tarboush, S. Tarem, When a muon is not a muon: detecting fast long-lived charged particles from cascade decays using a mass scan. arXiv:1112.4486 [hep-ph]

  72. R. Kitano, A clean slepton mixing signal at the LHC. J. High Energy Phys. 03, 023 (2008). arXiv:0801.3486 [hep-ph]

    Article  ADS  Google Scholar 

  73. S. Kaneko, J. Sato, T. Shimomura, O. Vives, M. Yamanaka, Measuring lepton flavour violation at LHC with long-lived slepton in the coannihilation region. Phys. Rev. D 78, 116013 (2008). arXiv:0811.0703 [hep-ph]

    Article  ADS  Google Scholar 

  74. J.L. Feng, S.T. French, C.G. Lester, Y. Nir, Y. Shadmi, The shifted peak: resolving nearly degenerate particles at the LHC. Phys. Rev. D 80, 114004 (2009). arXiv:0906.4215 [hep-ph]

    Article  ADS  Google Scholar 

  75. J.L. Feng, S.T. French, I. Galon, C.G. Lester, Y. Nir et al., Measuring slepton masses and mixings at the LHC. J. High Energy Phys. 1001, 047 (2010). arXiv:0910.1618 [hep-ph]

    Article  ADS  Google Scholar 

  76. T. Ito, R. Kitano, T. Moroi, Measurement of the superparticle mass spectrum in the long-lived stau scenario at the LHC. J. High Energy Phys. 1004, 017 (2010). arXiv:0910.5853 [hep-ph]

    Article  ADS  Google Scholar 

  77. S. Ambrosanio, G.D. Kribs, S.P. Martin, Three body decays of selectrons and smuons in low-energy supersymmetry breaking models. Nucl. Phys. B 516, 55–69 (1998). arXiv:hep-ph/9710217

    Article  ADS  Google Scholar 

  78. J.L. Feng, I. Galon, D. Sanford, Y. Shadmi, F. Yu, Three-body decays of sleptons with general flavor violation and left-right mixing. Phys. Rev. D 79, 116009 (2009). arXiv:0904.1416 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research supported in part by the Israel Science Foundation (ISF) under grant No. 1367/11, by the United States-Israel Binational Science Foundation (BSF) under grant No. 2010221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Shadmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shadmi, Y. Flavor and LHC searches for new physics. Eur. Phys. J. C 72, 2104 (2012). https://doi.org/10.1140/epjc/s10052-012-2104-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2104-0

Keywords

Navigation