Skip to main content
Log in

Review of new physics effects in \(t\bar{t}\) production

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Both CDF and DØ report a forward–backward asymmetry in \(t\bar{t}\) production that is above the standard model prediction. We review new physics models that can give a large forward backward asymmetry in \(t\bar{t}\) production at the Tevatron and the constraints these models face from searches for dijet resonances and contact interactions, from flavor physics and the \(t\bar{t}\) cross section. Expected signals at the LHC are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Note that DØ also reports a leptonic asymmetry \(A_{\mathrm{FB}}^{l} = 0.152\pm 0.038^{+0.010}_{-0.013}\) to be compared to MC@NLO prediction of \(A_{\mathrm{FB}}^{l,\mathrm{SM}} = 0.021\pm0.001\) [3, 4].

  2. In the \(p\bar{p}\) frame, another recent approximate NNLO calculation [7] yields \(A_{\mathrm{FB}}^{\mathrm{SM}}=0.052^{+0.000}_{-0.006}\) with m t =173 GeV, to be compared with the CDF value of \(A_{\mathrm{FB}}^{\mathrm{incl}}= 0.150 \pm0.058 \pm0.024\) [1]. Both SM predictions build upon the recent progress in approximate NNLO calculations [813] and previously known NLO results [1416].

  3. The most recent combination of CDF measurements [21] bears an even smaller error with \(\sigma^{\mathrm{incl}.}_{t\bar{t}} = (7.50\pm0.48)~\mathrm{pb}\), but was done assuming m t =172.5 GeV. Using the provided interpolation formulae in [17] yields \(\sigma_{t\bar{t}}^{\mathrm{SM}} = (6.75^{+0.08}_{-0.42})~\mathrm{pb}\) in the SM at approximate NNLO in QCD.

  4. For a general discussion on the physics beyond the SM analysis in the EFT approach and classification of all corresponding D=5,6 effective operators cf. [2426].

  5. A discussion on reducing the overcomplete set of all possible EW symmetric operators can be found in [27, 29].

  6. For a general discussion of the CP violating phenomenology associated with operators in (2) cf. [32].

  7. Here we are neglecting the effects of light quark mass insertions.

  8. One immediate consequence of these bounds is that the boosted massive jet cross section as measured by CDF [50] cannot be accommodated by EFT contributions to \(t\bar{t}\) final states at \(\mathcal{O}(1/\varLambda^{2})\) [43].

  9. Note that this model does not implement an SU(2) flavor symmetry, therefore it has potential problems with both K\(\bar{K}\) and D\(\bar{D}\) mixings which can not be protected by simple U(1) d horizontal asymmetries [127].

  10. In the t-channel models, the \(A_{\mathrm{FB}}^{t\bar{t}}\) provided from top polarization will enhance (compete with) the one from Rutherford enhancement in the vector boson (scalar) models [61].

References

  1. T. Aaltonen et al. (CDF), Phys. Rev. D 83, 112003 (2011). arXiv:1101.0034

    Article  ADS  Google Scholar 

  2. Y. Takeuchi et al. (CDF) (2011). http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/, Note10398

  3. V.M. Abazov et al. (DØ), arXiv:1107.4995 (2011)

  4. R. Demina (DØ), Talk at the EPS-HEP 2011 conference, Grenoble (2011)

  5. V. Ahrens, A. Ferroglia, M. Neubert et al., arXiv:1106.6051 (2011)

  6. A.D. Martin, W.J. Stirling, R.S. Thorne et al., Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002

    Article  ADS  Google Scholar 

  7. N. Kidonakis, arXiv:1105.5167 (2011)

  8. S. Moch, P. Uwer, Nucl. Phys. Proc. Suppl. 183, 75 (2008). arXiv:0807.2794

    Article  ADS  Google Scholar 

  9. M. Czakon, A. Mitov, G.F. Sterman, Phys. Rev. D 80, 074017 (2009). arXiv:0907.1790

    Article  ADS  Google Scholar 

  10. M. Beneke, M. Czakon, P. Falgari et al., Phys. Lett. B 690, 483 (2010). arXiv:0911.5166

    Article  ADS  Google Scholar 

  11. N. Kidonakis, R. Vogt, Phys. Rev. D 78, 074005 (2008). arXiv:0805.3844

    Article  ADS  Google Scholar 

  12. M. Cacciari, S. Frixione, M.L. Mangano et al., J. High Energy Phys. 09, 127 (2008). arXiv:0804.2800

    Article  ADS  Google Scholar 

  13. N. Kidonakis, Phys. Rev. D 82, 114030 (2010). arXiv:1009.4935

    Article  ADS  Google Scholar 

  14. O. Antunano, J.H. Kuhn, G. Rodrigo, Phys. Rev. D 77, 014003 (2008). arXiv:0709.1652

    Article  ADS  Google Scholar 

  15. M.T. Bowen, S.D. Ellis, D. Rainwater, Phys. Rev. D 73, 014008 (2006). arXiv:hep-ph/0509267

    Article  ADS  Google Scholar 

  16. J.H. Kuhn, G. Rodrigo, Phys. Rev. D 59, 054017 (1999). arXiv:hep-ph/9807420

    Article  ADS  Google Scholar 

  17. V. Ahrens, A. Ferroglia, M. Neubert et al., arXiv:1103.0550 (2011)

  18. V. Ahrens, A. Ferroglia, B.D. Pecjak et al., arXiv:1105.5824 (2011)

  19. N. Kidonakis, arXiv:1105.3481 (2011)

  20. T. Aaltonen et al. (CDF), Phys. Rev. Lett. 102, 222003 (2009). arXiv:0903.2850

    Article  ADS  Google Scholar 

  21. T. Aaltonen et al. (CDF), Public Note 9913 (2009)

  22. B. Grinstein, A.L. Kagan, M. Trott et al., Phys. Rev. Lett. 107, 012002 (2011). arXiv:1102.3374

    Article  ADS  Google Scholar 

  23. V. Ahrens, A. Ferroglia, M. Neubert et al., J. High Energy Phys. 09, 097 (2010). arXiv:1003.5827

    Article  ADS  Google Scholar 

  24. W. Buchmuller, D. Wyler, Nucl. Phys. B 268, 621 (1986)

    Article  ADS  Google Scholar 

  25. C. Arzt, M. Einhorn, J. Wudka, Nucl. Phys. B 433, 41 (1995). arXiv:hep-ph/9405214

    Article  ADS  Google Scholar 

  26. B. Grzadkowski, M. Iskrzynski, M. Misiak et al., J. High Energy Phys. 1010, 085 (2010). arXiv:1008.4884

    Article  ADS  Google Scholar 

  27. C. Degrande, J.-M. Gerard, C. Grojean et al., J. High Energy Phys. 03, 125 (2011). arXiv:1010.6304

    Article  ADS  Google Scholar 

  28. J. Aguilar-Saavedra, M. Perez-Victoria, J. High Energy Phys. 1105, 034 (2011). arXiv:1103.2765

    Article  ADS  Google Scholar 

  29. J. Aguilar-Saavedra, Nucl. Phys. B 812, 181 (2009). arXiv:0811.3842

    Article  ADS  MATH  Google Scholar 

  30. B. Lillie, J. Shu, T.M. Tait, J. High Energy Phys. 0804, 087 (2008). arXiv:0712.3057

    Article  ADS  Google Scholar 

  31. J.F. Kamenik, M. Papucci, A. Weiler, arXiv:1107.3143

  32. D. Atwood, S. Bar-Shalom, G. Eilam et al., Phys. Rep. 347, 1 (2001). arXiv:hep-ph/0006032

    Article  ADS  Google Scholar 

  33. D. Atwood, A. Kagan, T. Rizzo, Phys. Rev. D 52, 6264 (1995). arXiv:hep-ph/9407408

    Article  ADS  Google Scholar 

  34. P. Haberl, O. Nachtmann, A. Wilch, Phys. Rev. D 53, 4875 (1996). arXiv:hep-ph/9505409

    Article  ADS  Google Scholar 

  35. K.-m. Cheung, Phys. Rev. D 53, 3604 (1996). arXiv:hep-ph/9511260

    Article  ADS  Google Scholar 

  36. O. Antipin, G. Valencia, Phys. Rev. D 79, 013013 (2009). arXiv:0807.1295

    Article  ADS  Google Scholar 

  37. S.K. Gupta, A.S. Mete, G. Valencia, Phys. Rev. D 80, 034013 (2009). arXiv:0905.1074

    Article  ADS  Google Scholar 

  38. Z. Hioki, K. Ohkuma, Eur. Phys. J. C 65, 127 (2010). arXiv:0910.3049

    Article  ADS  Google Scholar 

  39. D. Choudhury, P. Saha, arXiv:0911.5016 (2009)

  40. K. Kumar, T.M. Tait, R. Vega-Morales, J. High Energy Phys. 0905, 022 (2009). arXiv:0901.3808

    Article  ADS  Google Scholar 

  41. Z. Hioki, K. Ohkuma, Eur. Phys. J. C 71, 1535 (2011). arXiv:1011.2655

    Article  ADS  Google Scholar 

  42. Z. Hioki, K. Ohkuma, Phys. Rev. D 83, 114045 (2011). arXiv:1104.1221

    Article  ADS  Google Scholar 

  43. K. Blum, C. Delaunay, O. Gedalia et al., arXiv:1102.3133 (2011)

  44. E. Gabrielli, M. Raidal, arXiv:1106.4553 (2011)

  45. J. Aguilar-Saavedra, Nucl. Phys. B 843, 638 (2011). arXiv:1008.3562

    Article  ADS  MATH  Google Scholar 

  46. D.Y. Shao, C.S. Li, J. Wang et al., arXiv:1107.4012 (2011)

  47. C. Delaunay, O. Gedalia, Y. Hochberg et al., arXiv:1103.2297 (2011)

  48. D.-W. Jung, P. Ko, J.S. Lee et al., Phys. Lett. B 691, 238 (2010). arXiv:0912.1105

    Article  ADS  Google Scholar 

  49. C. Zhang, S. Willenbrock, Phys. Rev. D 83, 034006 (2011). arXiv:1008.3869

    Article  ADS  Google Scholar 

  50. CDF, Public Note 10234 (2011)

  51. ATLAS, http://cdsweb.cern.ch/record/1356196, ATLAS-CONF-2011-087 (2011)

  52. B. Grinstein, A.L. Kagan, M. Trott et al., arXiv:1108.4027 (2011)

  53. M.I. Gresham, I.-W. Kim, K.M. Zurek, arXiv:1107.4364 (2011)

  54. M.I. Gresham, I.-W. Kim, K.M. Zurek, Phys. Rev. D 83, 114027 (2011). arXiv:1103.3501

    Article  ADS  Google Scholar 

  55. S. Jung, A. Pierce, J.D. Wells, Phys. Rev. D 83, 114039 (2011). arXiv:1103.4835

    Article  ADS  Google Scholar 

  56. B. Grinstein, A.L. Kagan, M. Trott et al., J. High. Energy Phys. 1110, 072 (2011). arXiv:1108.4027. http://www.springerlink.com/content/710203232p02u6v1/?MUD=MP

    Article  ADS  Google Scholar 

  57. M.I. Gresham, I.-W. Kim, K.M. Zurek, arXiv:1107.4364 (2011)

  58. S. Jung, H. Murayama, A. Pierce et al., Phys. Rev. D 81, 015004 (2010). arXiv:0907.4112

    Article  ADS  Google Scholar 

  59. K. Cheung, W.-Y. Keung, T.-C. Yuan, Phys. Lett. B 682, 287 (2009). arXiv:0908.2589

    Article  ADS  Google Scholar 

  60. P.H. Frampton, J. Shu, K. Wang, Phys. Lett. B 683, 294 (2010). arXiv:0911.2955

    Article  ADS  Google Scholar 

  61. J. Shu, T.M.P. Tait, K. Wang, Phys. Rev. D 81, 034012 (2010). arXiv:0911.3237

    Article  ADS  Google Scholar 

  62. A. Arhrib, R. Benbrik, C.-H. Chen, Phys. Rev. D 82, 034034 (2010). arXiv:0911.4875

    Article  ADS  Google Scholar 

  63. I. Dorsner, S. Fajfer, J.F. Kamenik et al., Phys. Rev. D 81, 055009 (2010). arXiv:0912.0972

    Article  ADS  Google Scholar 

  64. J. Cao, Z. Heng, L. Wu et al., Phys. Rev. D 81, 014016 (2010). arXiv:0912.1447

    Article  ADS  Google Scholar 

  65. V. Barger, W.-Y. Keung, C.-T. Yu, Phys. Rev. D 81, 113009 (2010). arXiv:1002.1048

    Article  ADS  Google Scholar 

  66. Q.-H. Cao, D. McKeen, J.L. Rosner et al., Phys. Rev. D 81, 114004 (2010). arXiv:1003.3461

    Article  ADS  Google Scholar 

  67. B. Xiao, Y.-k. Wang, S.-h. Zhu, Phys. Rev. D 82, 034026 (2010). arXiv:1006.2510

    Article  ADS  Google Scholar 

  68. K. Cheung, T.-C. Yuan, Phys. Rev. D 83, 074006 (2011). arXiv:1101.1445

    Article  ADS  Google Scholar 

  69. J. Cao, L. Wang, L. Wu et al., arXiv:1101.4456 (2011)

  70. J. Shelton, K.M. Zurek, Phys. Rev. D 83, 091701 (2011). arXiv:1101.5392

    Article  ADS  Google Scholar 

  71. E.L. Berger, Q.-H. Cao, C.-R. Chen et al., Phys. Rev. Lett. 106, 201801 (2011). arXiv:1101.5625

    Article  ADS  Google Scholar 

  72. V. Barger, W.-Y. Keung, C.-T. Yu, Phys. Lett. B 698, 243 (2011). arXiv:1102.0279

    Article  ADS  Google Scholar 

  73. B. Bhattacherjee, S.S. Biswal, D. Ghosh, Phys. Rev. D 83, 091501 (2011). arXiv:1102.0545

    Article  ADS  Google Scholar 

  74. K.M. Patel, P. Sharma, J. High Energy Phys. 04, 085 (2011). arXiv:1102.4736

    Article  ADS  Google Scholar 

  75. E.R. Barreto, Y.A. Coutinho, J. Sa Borges, Phys. Rev. D 83, 054006 (2011). arXiv:1103.1266

    Article  ADS  Google Scholar 

  76. N. Craig, C. Kilic, M.J. Strassler, arXiv:1103.2127 (2011)

  77. M.R. Buckley, D. Hooper, J. Kopp et al., Phys. Rev. D 83, 115013 (2011). arXiv:1103.6035

    Article  ADS  Google Scholar 

  78. J. Shu, K. Wang, G. Zhu, arXiv:1104.0083 (2011)

  79. S. Jung, A. Pierce, J.D. Wells, arXiv:1104.3139 (2011)

  80. P.J. Fox, J. Liu, D. Tucker-Smith et al., arXiv:1104.4127 (2011)

  81. Y. Cui, Z. Han, M.D. Schwartz, arXiv:1106.3086 (2011)

  82. M. Duraisamy, A. Rashed, A. Datta, arXiv:1106.5982 (2011)

  83. J.A. Aguilar-Saavedra, M. Perez-Victoria, arXiv:1107.0841 (2011)

  84. K. Blum, Y. Hochberg, Y. Nir, arXiv:1107.4350 (2011)

  85. M. Frank, A. Hayreter, I. Turan, arXiv:1108.0998 (2011)

  86. R. Chivukula, E.H. Simmons, C.-P. Yuan, Phys. Rev. D 82, 094009 (2010). arXiv:1007.0260

    Article  ADS  Google Scholar 

  87. Y. Bai, J.L. Hewett, J. Kaplan et al., J. High Energy Phys. 03, 003 (2011). arXiv:1101.5203

    Article  ADS  Google Scholar 

  88. M. Bauer, F. Goertz, U. Haisch et al., J. High Energy Phys. 11, 039 (2010). arXiv:1008.0742

    Article  ADS  Google Scholar 

  89. I. Dorsner, S. Fajfer, J.F. Kamenik et al., Phys. Rev. D 82, 094015 (2010). arXiv:1007.2604

    Article  ADS  Google Scholar 

  90. G.F. Giudice, B. Gripaios, R. Sundrum, arXiv:1105.3161 (2011)

  91. P. Ferrario, G. Rodrigo, Phys. Rev. D 80, 051701 (2009). arXiv:0906.5541

    Article  ADS  Google Scholar 

  92. M.I. Gresham, I.-W. Kim, K.M. Zurek, arXiv:1102.0018 (2011)

  93. C. Delaunay, O. Gedalia, S.J. Lee et al., arXiv:1101.2902 (2011)

  94. K. Babu, M. Frank, S.K. Rai, arXiv:1104.4782 (2011)

  95. Z. Ligeti, M. Schmaltz, G.M. Tavares, J. High Energy Phys. 1106, 109 (2011). arXiv:1103.2757

    Article  ADS  Google Scholar 

  96. G.M. Tavares, M. Schmaltz, arXiv:1107.0978 (2011)

  97. J.M. Arnold, M. Pospelov, M. Trott et al., J. High Energy Phys. 01, 073 (2010). arXiv:0911.2225

    Article  ADS  Google Scholar 

  98. P. Ko, Y. Omura, C. Yu, arXiv:1108.4005 (2011)

  99. G. D’Ambrosio, G. Giudice, G. Isidori et al., Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036

    Article  ADS  Google Scholar 

  100. A.L. Kagan, G. Perez, T. Volansky et al., Phys. Rev. D 80, 076002 (2009). arXiv:0903.1794

    Article  ADS  Google Scholar 

  101. Z. Ligeti, M. Papucci, G. Perez et al., Phys. Rev. Lett. 105, 131601 (2010). arXiv:1006.0432

    Article  ADS  Google Scholar 

  102. A. Lenz, U. Nierste, J. Charles et al., Phys. Rev. D 83, 036004 (2011). arXiv:1008.1593

    Article  ADS  Google Scholar 

  103. G. Isidori, J.F. Kamenik, Phys. Lett. B 700, 145 (2011). arXiv:1103.0016

    Article  ADS  Google Scholar 

  104. A. Hektor, G. Hutsi, M. Kadastik et al., arXiv:1105.5644 (2011)

  105. U. Haisch, S. Westhoff, arXiv:1106.0529 (2011)

  106. B. Xiao, Y.-k. Wang, S.-h. Zhu, arXiv:1011.0152 (2010)

  107. P. Ferrario, G. Rodrigo, J. High Energy Phys. 02, 051 (2010). arXiv:0912.0687

    Article  ADS  Google Scholar 

  108. M.V. Martynov, A.D. Smirnov, Mod. Phys. Lett. A 25, 2637 (2010). arXiv:1006.4246

    Article  ADS  MATH  Google Scholar 

  109. C.-H. Chen, G. Cvetic, C.S. Kim, Phys. Lett. B 694, 393 (2011). arXiv:1009.4165

    Article  ADS  Google Scholar 

  110. G. Burdman, L. de Lima, R.D. Matheus, Phys. Rev. D 83, 035012 (2011). arXiv:1011.6380

    Article  ADS  Google Scholar 

  111. D. Choudhury, R.M. Godbole, S.D. Rindani et al., arXiv:1012.4750 (2010)

  112. J. Cao, L. Wu, J.M. Yang, Phys. Rev. D 83, 034024 (2011). arXiv:1011.5564

    Article  ADS  Google Scholar 

  113. R. Foot, Phys. Rev. D 83, 114013 (2011). arXiv:1103.1940

    Article  ADS  Google Scholar 

  114. E. Alvarez, L. Da Rold, J.I.S. Vietto et al., arXiv:1107.1473 (2011)

  115. H. Wang, Y.-k. Wang, B. Xiao et al., arXiv:1107.5769 (2011)

  116. J.-Y. Liu, Y. Tang, Y.-L. Wu, arXiv:1108.5012 (2011)

  117. CDF, http://www-cdf.fnal.gov/physics/new/top/2009/tprop/Afb/, PublicNote9724 (2009)

  118. V. Khachatryan et al. (CMS), Phys. Rev. Lett. 105, 211801 (2010). arXiv:1010.0203

    Article  ADS  Google Scholar 

  119. G. Aad et al. (ATLAS), Phys. Lett. B 694, 327 (2011). arXiv:1009.5069

    Article  ADS  Google Scholar 

  120. A. Gibson (ATLAS), Talk at the EPS-HEP 2011 conference, Grenoble (2011)

  121. CMS, arXiv:1107.4771 (2011)

  122. J.A. Aguilar-Saavedra, M. Perez-Victoria, arXiv:1107.2120 (2011)

  123. J. Shu, Phys. Rev. D 78, 096004 (2008). arXiv:0711.2516

    Article  ADS  Google Scholar 

  124. N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Rev. Lett. 86, 4757 (2001). arXiv:hep-th/0104005

    Article  MathSciNet  ADS  Google Scholar 

  125. H. Davoudiasl, S. Gopalakrishna, E. Ponton et al., New J. Phys. 12, 075011 (2010). arXiv:0908.1968

    Article  ADS  Google Scholar 

  126. A. Djouadi, G. Moreau, F. Richard, Phys. Lett. B 701, 458 (2011). arXiv:1105.3158

    Article  ADS  Google Scholar 

  127. C. Csaki, A. Falkowski, A. Weiler, Phys. Rev. D 80, 016001 (2009). arXiv:0806.3757

    Article  ADS  Google Scholar 

  128. R. Barcelo, A. Carmona, M. Masip et al., arXiv:1105.3333 (2011)

  129. E. Alvarez, L. Da Rold, A. Szynkman, J. High Energy Phys. 05, 070 (2011). arXiv:1011.6557

    Article  ADS  Google Scholar 

  130. J.H. Kuhn, G. Rodrigo, Phys. Rev. Lett. 81, 49 (1998). arXiv:hep-ph/9802268

    Article  ADS  Google Scholar 

  131. Y.-k. Wang, B. Xiao, S.-h. Zhu, Phys. Rev. D 83, 015002 (2011). arXiv:1011.1428

    Article  ADS  Google Scholar 

  132. B. Xiao, Y.-K. Wang, Z.-Q. Zhou et al., Phys. Rev. D 83, 057503 (2011). arXiv:1101.2507

    Article  ADS  Google Scholar 

  133. J.L. Hewett, J. Shelton, M. Spannowsky et al., arXiv:1103.4618 (2011)

  134. D. Krohn, T. Liu, J. Shelton et al., arXiv:1105.3743 (2011)

  135. Y. Bai, Z. Han, arXiv:1106.5071 (2011)

  136. A.L. Kagan, J.F. Kamenik, G. Perez et al., arXiv:1103.3747 (2011)

  137. J.-F. Arguin, M. Freytsis, Z. Ligeti, arXiv:1107.4090 (2011)

  138. CMS, noteCMSPASTOP-11-014 (2011). http://cdsweb.cern.ch/record/1369205

  139. P. Ferrari (ATLAS), Talk at the EPS-HEP 2011 conference, Grenoble (2011)

  140. CMS, CMSPASTOP-10-010 (2011). http://cdsweb.cern.ch/record/1335714/

  141. S. Jung, A. Pierce, J.D. Wells, arXiv:1108.1802 (2011)

  142. B. Lillie, L. Randall, L.-T. Wang, J. High Energy Phys. 09, 074 (2007). arXiv:hep-ph/0701166

    Article  ADS  Google Scholar 

  143. K. Agashe, A. Belyaev, T. Krupovnickas et al., Phys. Rev. D 77, 015003 (2008). arXiv:hep-ph/0612015

    Article  ADS  Google Scholar 

  144. ATLAS, ATLAS-CONF-2011-108 (2011). https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-108/

  145. CMS, CMS-PAS-TOP-11-001 (2011). http://cdsweb.cern.ch/record/1336491/

  146. J.A. Aguilar-Saavedra, M. Perez-Victoria, arXiv:1105.4606 (2011)

Download references

Acknowledgements

We would like to thank Ulrich Haisch for his useful comments and careful reading of the manuscript. The work of J.F.K. and J.Z. is supported in part by the Slovenian Research Agency. J.S. is supported in part by the World Premier International Research Center Initiative (WPI initiative) MEXT, Japan and the Grant-in-Aid for scientific research (Young Scientists (B) 21740169) from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jure Zupan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamenik, J.F., Shu, J. & Zupan, J. Review of new physics effects in \(t\bar{t}\) production. Eur. Phys. J. C 72, 2102 (2012). https://doi.org/10.1140/epjc/s10052-012-2102-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2102-2

Keywords

Navigation