Skip to main content
Log in

Revisit emission spectrum and entropy quantum of the Reissner–Nordström black hole

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Banerjee and Majhi’s recent work shows that black hole’s emission spectrum could be fully reproduced in the tunneling picture, where, as an intriguing technique, the Kruskal extension was introduced to connect the left and right modes inside and outside the horizon. Some attempt, as an extension, was focused on producing the Hawking emission spectrum of the (charged) Reissner–Nordström black hole in the Banerjee–Majhi treatment. Unfortunately, the Kruskal extension in their observation was so badly defined that the ingoing mode was classically forbidden traveling towards the center of black hole, but could quantum tunnel across the horizon with the probability \(\varGamma=\mathrm{e}^{-\pi\omega_{0}/\kappa_{+}}\). This tunneling picture is unphysical. With this point as a central motivation, in this paper we first introduce such a suitable Kruskal extension for the (charged) Reissner–Nordström black hole that a perfect tunneling picture can be provided during the charged particle’s emission. Then, under the new Kruskal extension, we revisit the Hawking emission spectrum and entropy spectroscopy as tunneling from the charged black hole. The result shows that the tunneling method is so universally robust that the Hawking blackbody emission spectrum from a charged black hole can be well reproduced in the tunneling mechanism, and its induced entropy quantum is a much better approximation for the forthcoming quantum gravity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zhao, L.C. Zhang, H.F. Li, Commun. Theor. Phys. 53, 499 (2010)

    Article  ADS  Google Scholar 

  2. P. Kraus, F. Wilczek, Nucl. Phys. B 433, 403 (1995)

    Article  ADS  Google Scholar 

  3. P. Kraus, F. Wilczek, Nucl. Phys. B 437, 231 (1995)

    Article  ADS  Google Scholar 

  4. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  5. M.K. Parikh, Int. J. Mod. Phys. D 13, 2351 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  6. M.K. Parikh, Gen. Relativ. Gravit. 36, 2419 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60, 024007 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Shankaranarayanan, K. Srinivasan, T. Padmanabhan, Mod. Phys. Lett. A 16, 571 (2001)

    Article  MathSciNet  Google Scholar 

  9. S. Shankaranarayanan, T. Padmanabhan, K. Srinivasan, Class. Quantum Gravity 19, 2671 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. S. Hemming, E. Keski-Vakkuri, Phys. Rev. D 64, 044006 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  11. A.J.M. Medved, Phys. Rev. D 66, 124009 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  12. A.J.M. Medved, Class. Quantum Gravity 19, 589 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. E.C. Vagenas, Phys. Lett. B 503, 399 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. E.C. Vagenas, Phys. Lett. B 559, 65 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. E.C. Vagenas, Mod. Phys. Lett. A 17, 609 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A.J.M. Medved, E.C. Vagenas, Mod. Phys. Lett. A 20, 1723 (2005)

    Article  ADS  MATH  Google Scholar 

  17. A.J.M. Medved, E.C. Vagenas, Mod. Phys. Lett. A 20, 2449 (2005)

    Article  ADS  MATH  Google Scholar 

  18. M. Arzano, A.J.M. Medved, E.C. Vagenas, J. High Energy Phys. 0509, 037 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. J.Y. Zhang, Z. Zhao, Phys. Lett. B 618, 14 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. J.Y. Zhang, Z. Zhao, J. High Energy Phys. 0505, 055 (2005)

    Article  Google Scholar 

  21. Y.P. Hu, J.J. Zhang, Z. Zhao, Mod. Phys. Lett. A 21, 2143 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. C.Z. Liu, J.Y. Zhang, Z. Zhao, Phys. Lett. B 639, 670 (2006)

    Article  ADS  Google Scholar 

  23. W.B. Liu, Phys. Lett. B 634, 541 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  24. Q.Q. Jiang, S.Q. Wu, Phys. Lett. B 635, 151 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. Q.Q. Jiang, S.Q. Wu, X. Cai, Phys. Rev. D 73, 064003 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  26. S.Q. Wu, Q.Q. Jiang, J. High Energy Phys. 0603, 079 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  27. Hawking radiation of charged particles as tunneling from higher dimensional Reissner–Nordstrom–de Sitter black holes. arXiv:hep-th/0603082

  28. L. Zhao, Tunnelling through black rings. arXiv:hep-th/0602065

  29. S.P. Kim, J. High Energy Phys. 0711, 048 (2007)

    Article  ADS  Google Scholar 

  30. S. Sarkar, D. Kothawala, Phys. Lett. B 659, 683 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Pilling, Phys. Lett. B 660, 402 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  32. M.H. Ali, Class. Quantum Gravity 24, 5849 (2007)

    Article  ADS  MATH  Google Scholar 

  33. P. Mitra, Phys. Lett. B 648, 240 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. Z.Z. Ma, Phys. Lett. B 666, 376 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. B.C. Zhang, Q.Y. Cai, M.S. Zhan, Phys. Lett. B 665, 260 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  36. C.K. Ding, J.L. Jing, Class. Quantum Gravity 25, 145015 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  37. Y. Sekiwa, Decay of the cosmological constant by Hawking radiation as quantum tunneling. arXiv:0802.3266 [hep-th]

  38. R. Kerner, R.B. Mann, Phys. Rev. D 73, 104010 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Kerner, R.B. Mann, Phys. Rev. D 75, 084022 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Kerner, R.B. Mann, Class. Quantum Gravity 25, 095014 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. R. Kerner, R.B. Mann, Phys. Lett. B 665, 277 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Alexandre, R.B. Mann, Phys. Lett. B 673, 168 (2009)

    Article  MathSciNet  Google Scholar 

  43. R. Li, J.R. Ren, Phys. Lett. B 661, 370 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Li, J.R. Ren, S.W. Wei, Class. Quantum Gravity 25, 125016 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  45. R.Di. Criscienzo, L. Vanzo, Europhys. Lett. 82, 60001 (2008)

    Article  Google Scholar 

  46. D.Y. Chen, Q.Q. Jiang, X.T. Zu, Phys. Lett. B 665, 106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  47. D.Y. Chen, Q.Q. Jiang, X.T. Zu, Class. Quantum Gravity 25, 205022 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  48. Q.Q. Jiang, Phys. Rev. D 78, 044009 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  49. Q.Q. Jiang, Phys. Lett. B 666, 517 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  50. R. Banerjee, B.R. Majhi, J. High Energy Phys. 0806, 095 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  51. B.R. Majhi, Phys. Rev. D 79, 044005 (2009)

    Article  ADS  Google Scholar 

  52. J.Y. Zhang, Phys. Lett. B 668, 353 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  53. R. Banerjee, B.R. Majhi, Phys. Lett. B 675, 243 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  54. R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010)

    Article  ADS  Google Scholar 

  55. R. Banerjee, S.K. Modak, J. High Energy Phys. 0911, 073 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  56. B.R. Majhi, Phys. Lett. B 686, 49 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  57. Q.Q. Jiang, Y. Han, X. Cai, J. High Energy Phys. 1008, 049 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  58. Q.Q. Jiang, X. Cai, J. High Energy Phys. 1011, 066 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  59. S. Hod, Phys. Rev. D 59, 024014 (1999)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China with Grant No. 11005086, and by the Sichuan Youth Science and Technology Foundation with Grant No. 2011JQ0019, and by a starting fund of China West Normal University with Grant No. 10B016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Quan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, QQ. Revisit emission spectrum and entropy quantum of the Reissner–Nordström black hole. Eur. Phys. J. C 72, 2086 (2012). https://doi.org/10.1140/epjc/s10052-012-2086-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2086-y

Keywords

Navigation