Skip to main content
Log in

Back reaction, emission spectrum and entropy spectroscopy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently, an interesting work, which reformulates the tunneling framework to directly produce the Hawking emission spectrum and entropy spectroscopy in the tunneling picture, has been received a broad attention. However, during the emission process, most related observations have not incorporated the effects of back reaction on the background spacetime, whose derivations are therefore not the desiring results for the real physical process. With this point as a central motivation, in this paper we suitably adapt the reformulated tunneling framework so that it can well accommodate the effects of back reaction to produce the Hawking emission spectrum and entropy spectroscopy. Consequently, we interestingly find that, when back reaction is considered, the Parikh-Wilczek’s outstanding observations that, an isolated radiating black hole has an unitary-evolving emission spectrum that is not precisely thermal, but is related to the change of the Bekenstein-Hawking entropy, can also be reproduced in the reformulated tunneling framework, meanwhile the entropy spectrum has the same form as that without inclusion of back reaction, which demonstrates the entropy quantum is independent of the effects of back reaction. As our final analysis, we concentrate on the issues of the black hole information, but unfortunately find that, even including the effects of back reaction and higher-order quantum corrections, such tunneling formalism can still not provide a mechanism for preserving the black hole information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Black hole explosions?, Nature 30 (1974) 248.

    Google Scholar 

  2. P. Kraus, Hawking radiation from black holes formed during quantum tunneling, Nucl. Phys. B 425 (1994) 615 [gr-qc/9403048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Kraus and F. Wilczek, Self-interaction correction to black hole radiance, Nucl. Phys. B 433 (1995) 403 [gr-qc/9408003] [SPIRES].

    Article  ADS  Google Scholar 

  4. P. Kraus and F. Wilczek, Effect of selfinteraction on charged black hole radiance, Nucl. Phys. B 437 (1995) 231 [hep-th/9411219] [SPIRES].

    Article  ADS  Google Scholar 

  5. E. Keski-Vakkuri and P. Kraus, Microcanonical D-branes and back reaction, Nucl. Phys. B 491 (1997) 249 [hep-th/9610045] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Keski-Vakkuri and P. Kraus, Tunneling in a time dependent setting, Phys. Rev. D 54 (1996) 7407 [hep-th/9604151] [SPIRES].

    ADS  Google Scholar 

  7. M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. H. Zaidi and J. Gegenberg, Back reaction of Hawking radiation on black hole geometry, Phys. Rev. D 57 (1998) 1112 [gr-qc/9705011] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. M.K. Parikh, New coordinates for de Sitter space and de Sitter radiation, Phys. Lett. B 546 (2002) 189 [hep-th/0204107] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. M.K. Parikh, A secret tunnel through the horizon, Int. J. Mod. Phys. D 13 (2004) 2351 [Gen. Rel. Grav. 36 (2004) 2419] [hep-th/0405160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. S. Hemming and E. Keski-Vakkuri, Hawking radiation from AdS black holes, Phys. Rev. D 64 (2001) 044006 [gr-qc/0005115] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. A.J.M. Medved, Radiation via tunneling from a de Sitter cosmological horizon, Phys. Rev. D 66 (2002) 124009 [hep-th/0207247] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. E.C. Vagenas, Are extremal 2D black holes really frozen?, Phys. Lett. B 503 (2001) 399 [hep-th/0012134] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. M.R. Setare and E.C. Vagenas, Self-gravitational corrections to the Cardy-Verlinde formula and the FRW brane cosmology in SdS (5) bulk, Int. J. Mod. Phys. A 20 (2005) 7219 [hep-th/0405186] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. E.C. Vagenas, Generalization of the KKW analysis for black hole radiation, Phys. Lett. B 559 (2003) 65 [hep-th/0209185] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. M. Arzano, Information leak through the quantum horizon, Mod. Phys. Lett. A 21 (2006) 41 [hep-th/0504188] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. M. Arzano, A.J.M. Medved and E.C. Vagenas, Hawking radiation as tunneling through the quantum horizon, JHEP 09 (2005) 037 [hep-th/0505266] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. A.J.M. Medved and E.C. Vagenas, On Hawking radiation as tunneling with logarithmic corrections, Mod. Phys. Lett. A 20 (2005) 1723 [gr-qc/0505015] [SPIRES].

    ADS  Google Scholar 

  20. A.J.M. Medved and E.C. Vagenas, On Hawking radiation as tunneling with back-reaction, Mod. Phys. Lett. A 20 (2005) 2449 [gr-qc/0504113] [SPIRES].

    ADS  Google Scholar 

  21. R. Banerjee and B.R. Majhi, Quantum tunneling and back reaction, Phys. Lett. B 662 (2008) 62 [arXiv:0801.0200] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. R. Banerjee, B.R. Majhi and S. Samanta, Noncommutative black hole thermodynamics, Phys. Rev. D 77 (2008) 124035 [arXiv:0801.3583] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. T. Ghosh and S. SenGupta, Tunneling across dilaton-axion black holes, Phys. Lett. B 678 (2009) 112 [arXiv:0906.0686] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. Q.-Q. Jiang, S.-Q. Wu and X. Cai, Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes, Phys. Rev. D 73 (2006) 064003 [hep-th/0512351] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. Q.-Q. Jiang and S.-Q. Wu, Hawking radiation of charged particles as tunneling from Reissner-Nordstr¨om-de Sitter black holes with a global monopole, Phys. Lett. B 635 (2006) 151 [hep-th/0511123] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. J.-Y. Zhang and Z. Zhao, Hawking radiation of charged particles via tunneling from the Reissner-Nordström black hole, JHEP 10 (2005) 055 [SPIRES].

    Article  ADS  Google Scholar 

  27. J.-Y. Zhang and Z. Zhao, Massive particles-prime black hole tunneling and de Sitter tunneling, Nucl. Phys. B 725 (2005) 173 [SPIRES].

    Article  ADS  Google Scholar 

  28. J.-Y. Zhang and Z. Zhao, New coordinates for Kerr-Newman black hole radiation, Phys. Lett. B 618 (2005) 14 [SPIRES].

    ADS  Google Scholar 

  29. C.-Z. Liu, J.-Y. Zhang and Z. Zhao, Charged particle’s tunneling from a dilaton black hole, Phys. Lett. B 639 (2006) 670 [SPIRES].

    ADS  Google Scholar 

  30. W. Liu, New coordinates for BTZ black hole and Hawking radiation via tunnelling, Phys. Lett. B 634 (2006) 541 [gr-qc/0512099] [SPIRES].

    ADS  Google Scholar 

  31. L. Zhao, Tunnelling through black rings, Commun. Theor. Phys. 47 (2007) 835 [hep-th/0602065] [SPIRES].

    Article  Google Scholar 

  32. B. Zhang, Q.-y. Cai and M.-s. Zhan, Hawking radiation as tunneling derived from Black Hole Thermodynamics through the quantum horizon, Phys. Lett. B 665 (2008) 260 [arXiv:0806.2015] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. C.K. Ding and J.L. Jing, What kinds of coordinate can keep the Hawking temperature invariant for the static spherically symmetric black hole?, Class. Quant. Grav. 25 (2008) 145015.

    Article  MathSciNet  ADS  Google Scholar 

  34. E.C. Vagenas, Complex paths and covariance of Hawking radiation in 2D stringy black holes, Nuovo Cim. B 117 (2002) 899 [hep-th/0111047] [SPIRES].

    ADS  Google Scholar 

  35. K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys. Rev. D 60 (1999) 024007 [gr-qc/9812028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. S. Shankaranarayanan, K. Srinivasan and T. Padmanabhan, Method of complex paths and general covariance of Hawking radiation, Mod. Phys. Lett. A 16 (2001) 571 [gr-qc/0007022] [SPIRES].

    MathSciNet  Google Scholar 

  37. S. Shankaranarayanan, T. Padmanabhan and K. Srinivasan, Hawking radiation in different coordinate settings: complex paths approach, Class. Quant. Grav. 19 (2002) 2671 [gr-qc/0010042] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. M. Angheben, M. Nadalini, L. Vanzo and S. Zerbini, Hawking radiation as tunneling for extremal and rotating black holes, JHEP 05 (2005) 014 [hep-th/0503081] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. S.P. Kim, Hawking radiation as quantum tunneling in Rindler coordinate, JHEP 11 (2007) 048 [arXiv:0710.0915] [SPIRES].

    Article  ADS  Google Scholar 

  40. S. Sarkar and D. Kothawala, Hawking radiation as tunneling for spherically symmetric black holes: a generalized treatment, Phys. Lett. B 659 (2008) 683 [arXiv:0709.4448] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. T. Pilling, Tunneling derived from black hole thermodynamics, Phys. Lett. B 660 (2008) 402 [arXiv:0709.1624] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. M.H. Ali, Hawking radiation via tunneling from hot NUT -Kerr-Newman-Kasuya spacetime, Class. Quant. Grav. 24 (2007) 5849 [arXiv:0706.3890] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  43. P. Mitra, Hawking temperature from tunnelling formalism, Phys. Lett. B 648 (2007) 240 [hep-th/0611265] [SPIRES].

    ADS  Google Scholar 

  44. E.T. Akhmedov, V. Akhmedova and D. Singleton, Hawking temperature in the tunneling picture, Phys. Lett. B 642 (2006) 124 [hep-th/0608098] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. E.T. Akhmedov, T. Pilling and D. Singleton, Subtleties in the quasi-classical calculation of Hawking radiation, Int. J. Mod. Phys. D 17 (2008) 2453 [arXiv:0805.2653] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. V. Akhmedova, T. Pilling, A. de Gill and D. Singleton, Temporal contribution to gravitational WKB-like calculations, Phys. Lett. B 666 (2008) 269 [arXiv:0804.2289] [SPIRES].

    ADS  Google Scholar 

  47. V. Akhmedova, T. Pilling, A. de Gill and D. Singleton, Comments on anomaly versus WKB/tunneling methods for calculating Unruh radiation, Phys. Lett. B 673 (2009) 227 [arXiv:0808.3413] [SPIRES].

    ADS  Google Scholar 

  48. R. Kerner and R.B. Mann, Tunnelling, temperature and Taub-NUT black holes, Phys. Rev. D 73 (2006) 104010 [gr-qc/0603019] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. R. Kerner and R.B. Mann, Tunnelling from Gödel black holes, Phys. Rev. D 75 (2007) 084022 [hep-th/0701107] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. R. Kerner and R.B. Mann, Fermions tunnelling from black holes, Class. Quant. Grav. 25 (2008) 095014.

    Article  MathSciNet  ADS  Google Scholar 

  51. R. Kerner and R.B. Mann, Charged fermions tunnelling from Kerr-Newman black holes, Phys. Lett. B 665 (2008) 277 [arXiv:0803.2246] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. A. Yale and R.B. Mann, Gravitinos tunneling from black holes, Phys. Lett. B 673 (2009) 168 [arXiv:0808.2820] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. R. Li and J.-R. Ren, Dirac particles tunneling from BTZ black hole, Phys. Lett. B 661 (2008) 370 [arXiv:0802.3954] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. R. Li, J.R. Ren and S.W. Wei, Hawking radiation of Dirac particles via tunneling from Kerr black hole, Class. Quant. Grav. 25 (2008) 125016 [arXiv:0803.1410] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. R. Di. Criscienzo and L. Vanzo, Fermion tunneling from dynamical horizons, Europhys. Lett. 82 (2008) 60001.

    Article  Google Scholar 

  56. D.-Y. Chen, Q.-Q. Jiang and X.-T. Zu, Hawking radiation of Dirac particles via tunnelling from rotating black holes in de Sitter spaces, Phys. Lett. B 665 (2008) 106 [arXiv:0804.0131] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. D.-Y. Chen, Q.-Q. Jiang and X.-T. Zu, Fermions tunnelling from the charged dilatonic black holes, Class. Quant. Grav. 25 (2008) 205022.

    Article  MathSciNet  ADS  Google Scholar 

  58. Q.-Q. Jiang, Dirac particles’ tunnelling from black rings, Phys. Rev. D 78 (2008) 044009 [arXiv:0807.1358] [SPIRES].

    ADS  Google Scholar 

  59. Q.-Q. Jiang, Fermions tunnelling from GHS and non-extremal D1-D5 black holes, Phys. Lett. B 666 (2008) 517 [SPIRES].

    ADS  Google Scholar 

  60. R. Banerjee and B.R. Majhi, Quantum tunneling, trace anomaly and effective metric, Phys. Lett. B 674 (2009) 218 [arXiv:0808.3688] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. R. Banerjee and B.R. Majhi, Quantum tunneling beyond semiclassical approximation, JHEP 06 (2008) 095 [arXiv:0805.2220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. R. Banerjee and S.K. Modak, Exact differential and corrected area law for stationary black holes in tunneling method, JHEP 05 (2009) 063 [arXiv:0903.3321] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. B.R. Majhi, Fermion tunneling beyond semiclassical approximation, Phys. Rev. D 79 (2009) 044005 [arXiv:0809.1508] [SPIRES].

    ADS  Google Scholar 

  64. J. Zhang, Black hole quantum tunnelling and black hole entropy correction, Phys. Lett. B 668 (2008) 353 [arXiv:0806.2441] [SPIRES].

    ADS  Google Scholar 

  65. J. Zhang, Black hole entropy, log correction and inverse area correction, Phys. Lett. B 675 (2009) 14 [SPIRES].

    ADS  Google Scholar 

  66. T. Zhu, J.-R. Ren and M.-F. Li, Corrected entropy of Friedmann-Robertson-Walker universe in tunneling method, JCAP 08 (2009) 010 [arXiv:0905.1838] [SPIRES].

    ADS  Google Scholar 

  67. R. Banerjee and B.R. Majhi, Connecting anomaly and tunneling methods for Hawking effect through chirality, Phys. Rev. D 79 (2009) 064024 [arXiv:0812.0497] [SPIRES].

    ADS  Google Scholar 

  68. R. Banerjee and B.R. Majhi, Hawking black body spectrum from tunneling mechanism, Phys. Lett. B 675 (2009) 243 [arXiv:0903.0250] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. R. Banerjee and S.K. Modak, Quantum tunneling, blackbody spectrum and non-logarithmic entropy correction for Lovelock black holes, JHEP 11 (2009) 073 [arXiv:0908.2346] [SPIRES].

    Article  ADS  Google Scholar 

  70. B.R. Majhi, Hawking radiation and black hole spectroscopy in Hořava-Lifshitz gravity, Phys. Lett. B 686 (2010) 49 [arXiv:0911.3239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  71. R. Banerjee, B.R. Majhi and E.C. Vagenas, Quantum tunneling and black hole spectroscopy, Phys. Lett. B 686 (2010) 279 [arXiv:0907.4271] [SPIRES].

    ADS  Google Scholar 

  72. R. Banerjee, B.R. Majhi and E.C. Vagenas, Quantum tunneling and black hole spectroscopy, Phys. Lett. B 686 (2010) 279 [arXiv:0907.4271] [SPIRES].

    ADS  Google Scholar 

  73. Q.-Q. Jiang, Y. Han and X. Cai, Quantum corrections and black hole spectroscopy, JHEP 08 (2010) 049 [arXiv:1007.4456] [SPIRES].

    Article  ADS  Google Scholar 

  74. S. Hod, Bohr’s correspondence principle and the area spectrum of quantum black holes, Phys. Rev. Lett. 81 (1998) 4293 [gr-qc/9812002] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  75. G. Kunstatter, d-dimensional black hole entropy spectrum from quasi-normal modes, Phys. Rev. Lett. 90 (2003) 161301 [gr-qc/0212014] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. M. Maggiore, The physical interpretation of the spectrum of black hole quasinormal modes, Phys. Rev. Lett. 100 (2008) 141301 [arXiv:0711.3145] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  77. M.R. Setare, Area spectrum of extremal Reissner-Nordstr¨om black holes from quasi-normal modes, Phys. Rev. D 69 (2004) 044016 [hep-th/0312061] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. M.R. Setare, Near extremal Schwarzschild-de Sitter black hole area spectrum from quasi-normal modes, Gen. Rel. Grav. 37 (2005) 1411 [hep-th/0401063] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  79. M.R. Setare, Non-rotating BTZ black hole area spectrum from quasi-normal modes, Class. Quant. Grav. 21 (2004) 1453 [hep-th/0311221] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  80. M.R. Setare and E.C. Vagenas, Area spectrum of Kerr and extremal Kerr black holes from quasinormal modes, Mod. Phys. Lett. A 20 (2005) 1923 [hep-th/0401187] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  81. E.C. Vagenas, Area spectrum of rotating black holes via the new interpretation of quasinormal modes, JHEP 11 (2008) 073 [arXiv:0804.3264] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  82. A.J.M. Medved, On the Kerr quantum area spectrum, Class. Quant. Grav. 25 (2008) 205014 [arXiv:0804.4346] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. D. Kothawala, T. Padmanabhan and S. Sarkar, Is gravitational entropy quantized?, Phys. Rev. D 78 (2008) 104018 [arXiv:0807.1481] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  84. S.-W. Wei, R. Li, Y.-X. Liu and J.-R. Ren, Quantization of black hole entropy from quasinormal modes, JHEP 03 (2009) 076 [arXiv:0901.0587] [SPIRES].

    MathSciNet  Google Scholar 

  85. D. Singleton, E.C. Vagenas, T. Zhu and J.-R. Ren, Insights and possible resolution to the information loss paradox via the tunneling picture, JHEP 08 (2010) 089 [arXiv:1005.3778] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Quan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, QQ., Cai, X. Back reaction, emission spectrum and entropy spectroscopy. J. High Energ. Phys. 2010, 66 (2010). https://doi.org/10.1007/JHEP11(2010)066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)066

Keywords

Navigation