Skip to main content
Log in

Pseudo Goldstone Bosons phenomenology in Minimal Walking Technicolor

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We construct the non-linear realized Lagrangian for the Goldstone bosons associated to the breaking pattern of SU(4) to SO(4). This pattern is expected to occur in any Technicolor extension of the standard model featuring two Dirac fermions transforming according to real representations of the underlying gauge group. We concentrate on the Minimal Walking Technicolor quantum number assignments with respect to the standard model symmetries. We demonstrate that for, any choice of the quantum numbers, consistent with gauge and Witten anomalies the spectrum of the pseudo Goldstone Bosons contains electrically doubly charged states which can be discovered at the Large Hadron Collider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. However, in a few cases certain patterns have been confirmed. For example for the SU(2) TC theory with two Dirac fermions transforming according to the fundamental representation of the underlying TC gauge group there is a definitive Lattice proof [13] that SU(4) breaks to Sp(4). The effective, linear and non-linear, Lagrangians for SU(4) breaking to Sp(4) describing also the interactions with the SM have been constructed in [1416].

  2. We use the two component Weyl notation throughout the paper.

  3. A detailed discussion regarding the vacuum alignment for MWT can be found in [31].

  4. Bound states made by one technifermion and one technigluon have electric charge \(-\frac{y \pm1}{2}\).

  5. Conventions regarding SM quantum numbers are reported in Appendix B.

References

  1. S. Weinberg, Phys. Rev. D 19, 1277 (1979)

    Article  ADS  Google Scholar 

  2. L. Susskind, Phys. Rev. D 20, 2619 (1979)

    Article  ADS  Google Scholar 

  3. J.R. Andersen et al., Eur. Phys. J. Plus 126, 81 (2011). arXiv:1104.1255 [hep-ph]

    Article  Google Scholar 

  4. J.R. Andersen, T. Hapola, F. Sannino, arXiv:1105.1433 [hep-ph]

  5. A. Belyaev, R. Foadi, M.T. Frandsen, M. Jarvinen, F. Sannino, A. Pukhov, Phys. Rev. D 79, 035006 (2009). arXiv:0809.0793 [hep-ph]

    Article  ADS  Google Scholar 

  6. H.J. He et al., Phys. Rev. D 78, 031701 (2008). arXiv:0708.2588 [hep-ph]

    Article  ADS  Google Scholar 

  7. E. Accomando, S. De Curtis, D. Dominici, L. Fedeli, Phys. Rev. D 79, 055020 (2009). arXiv:0807.5051 [hep-ph]

    Article  ADS  Google Scholar 

  8. R. Barbieri, G. Isidori, V.S. Rychkov, E. Trincherini, Phys. Rev. D 78, 036012 (2008). arXiv:0806.1624 [hep-ph]

    Article  ADS  Google Scholar 

  9. J. Hirn, A. Martin, V. Sanz, J. High Energy Phys. 0805, 084 (2008). arXiv:0712.3783 [hep-ph]

    Article  ADS  Google Scholar 

  10. O. Cata, G. Isidori, J.F. Kamenik, Nucl. Phys. B 822, 230 (2009). arXiv:0905.0490 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  11. M.E. Peskin, Nucl. Phys. B 175, 197 (1980)

    Article  ADS  Google Scholar 

  12. J. Preskill, Nucl. Phys. B 177, 21 (1981)

    Article  ADS  Google Scholar 

  13. R. Lewis, C. Pica, F. Sannino, Phys. Rev. D 85, 014504 (2012). arXiv:1109.3513 [hep-ph]

    Article  ADS  Google Scholar 

  14. Z.y. Duan, P.S. Rodrigues da Silva, F. Sannino, Nucl. Phys. B 592, 371 (2001). arXiv:hep-ph/0001303

    Article  ADS  Google Scholar 

  15. T. Appelquist, P.S. Rodrigues da Silva, F. Sannino, Phys. Rev. D 60, 116007 (1999). arXiv:hep-ph/9906555

    Article  ADS  Google Scholar 

  16. T.A. Ryttov, F. Sannino, Phys. Rev. D 78, 115010 (2008). arXiv:0809.0713 [hep-ph]

    Article  ADS  Google Scholar 

  17. F. Sannino, K. Tuominen, Phys. Rev. D 71, 051901 (2005). arXiv:hep-ph/0405209

    Article  ADS  Google Scholar 

  18. D.K. Hong, S.D.H. Hsu, F. Sannino, Phys. Lett. B 597, 89 (2004). arXiv:hep-ph/0406200

    Article  ADS  Google Scholar 

  19. D.D. Dietrich, F. Sannino, K. Tuominen, Phys. Rev. D 72, 055001 (2005). arXiv:hep-ph/0505059

    Article  ADS  Google Scholar 

  20. N. Evans, F. Sannino, arXiv:hep-ph/0512080

  21. R. Foadi, M.T. Frandsen, T.A. Ryttov, F. Sannino, Phys. Rev. D 76, 055005 (2007). arXiv:0706.1696 [hep-ph]

    Article  ADS  Google Scholar 

  22. M.T. Frandsen, F. Sannino, Phys. Rev. D 81, 097704 (2010). arXiv:0911.1570 [hep-ph]

    Article  ADS  Google Scholar 

  23. F. Sannino, Phys. Rev. D 79, 096007 (2009). arXiv:0902.3494 [hep-ph]

    Article  ADS  Google Scholar 

  24. D.D. Dietrich, F. Sannino, Phys. Rev. D 75, 085018 (2007). arXiv:hep-ph/0611341

    Article  MathSciNet  ADS  Google Scholar 

  25. T.A. Ryttov, F. Sannino, Phys. Rev. D 78, 065001 (2008). arXiv:0711.3745 [hep-th]

    Article  ADS  Google Scholar 

  26. C. Pica, F. Sannino, Phys. Rev. D 83, 116001 (2011). arXiv:1011.3832 [hep-ph]

    Article  ADS  Google Scholar 

  27. C. Pica, F. Sannino, Phys. Rev. D 83, 035013 (2011). arXiv:1011.5917 [hep-ph]

    Article  ADS  Google Scholar 

  28. H.S. Fukano, F. Sannino, Phys. Rev. D 82, 035021 (2010). arXiv:1005.3340 [hep-ph]

    Article  ADS  Google Scholar 

  29. R.S. Chivukula, P. Ittisamai, E.H. Simmons, J. Ren, Phys. Rev. D 84, 115025 (2011). arXiv:1110.3688 [hep-ph]

    Article  ADS  Google Scholar 

  30. E. Witten, Phys. Lett. B 117, 324 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  31. D.D. Dietrich, M. Jarvinen, Phys. Rev. D 79, 057903 (2009). arXiv:0901.3528 [hep-ph]

    Article  ADS  Google Scholar 

  32. E. Eichten, K.D. Lane, Phys. Lett. B 90, 125 (1980)

    Article  ADS  Google Scholar 

  33. S. Dimopoulos, L. Susskind, Nucl. Phys. B 155, 237 (1979)

    Article  ADS  Google Scholar 

  34. M. Fairbairn, A.C. Kraan, D.A. Milstead, T. Sjostrand, P.Z. Skands, T. Sloan, Phys. Rep. 438, 1 (2007). arXiv:hep-ph/0611040

    Article  ADS  Google Scholar 

  35. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

  36. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

  37. E. Farhi, L. Susskind, Phys. Rep. 74, 277 (1981)

    Article  ADS  Google Scholar 

  38. R. Casalbuoni, A. Deandrea, S. De Curtis, D. Dominici, R. Gatto, J.F. Gunion, Nucl. Phys. B 555, 3 (1999). arXiv:hep-ph/9809523

    Article  ADS  Google Scholar 

  39. K.D. Lane, M.V. Ramana, Phys. Rev. D 44, 2678 (1991)

    Article  ADS  Google Scholar 

  40. K.D. Lane, Phys. Rev. D 60, 075007 (1999). arXiv:hep-ph/9903369

    Article  ADS  Google Scholar 

  41. A. Manohar, L. Randall, Phys. Lett. B 246, 537 (1990)

    Article  ADS  Google Scholar 

  42. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High Energy Phys. 1106, 128 (2011). arXiv:1106.0522 [hep-ph]

    Article  ADS  Google Scholar 

  43. N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614 (2009). arXiv:0806.4194 [hep-ph]

    Article  ADS  Google Scholar 

  44. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  45. E. Del Nobile, R. Franceschini, D. Pappadopulo, A. Strumia, Nucl. Phys. B 826, 217 (2010). arXiv:0908.1567 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  46. A.G. Akeroyd, S. Moretti, H. Sugiyama, arXiv:1201.5047 [hep-ph]

  47. O. Antipin, M. Heikinheimo, K. Tuominen, J. High Energy Phys. 0910, 018 (2009). arXiv:0905.0622 [hep-ph]

    Article  ADS  Google Scholar 

  48. CMS-PAS-HIG-11-007, http://cdsweb.cern.ch/record/1369542

  49. ATLAS-CONF-2011-127, http://cdsweb.cern.ch/record/1383792

  50. A. Read, Technical Report CERN-OPEN-2000-005, CERN (2000)

  51. T. Junk, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 434, 435 (1999). hep-ex/9902006

    Article  ADS  Google Scholar 

  52. G. Azuelos, K. Benslama, J. Ferland, J. Phys. G 32, 73 (2006). arXiv:hep-ph/0503096

    Article  ADS  Google Scholar 

  53. M. Perelstein, Prog. Part. Nucl. Phys. 58, 247 (2007). arXiv:hep-ph/0512128

    Article  ADS  Google Scholar 

  54. J.E. Cieza Montalvo, N.V. Cortez, J. Sa Borges, M.D. Tonasse, Nucl. Phys. B 756, 1 (2006) [Erratum-ibid. B 796, 422 (2008)]. hep-ph/0606243

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are happy to thank the CP3-Origins colleagues for fruitful discussions. We also kindly acknowledge discussions with Claude Duhr, Roshan Foadi, Mads T. Frandsen and Luca Vecchi. F.M. acknowledges the financial support from projects FPA2010-20807, 2009SGR502 and Consolider CPAN, and CSD2007-00042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Mescia.

Appendices

Appendix A: SU(4) generators and PGBs quantum numbers

It is convenient to use the following representation of the SU(4) hermitian generators:

(A.1)

where A is hermitian, C is hermitian and traceless, B=−B T and D=D T. The S are also a representation of the SO(4) generators, and thus leave the vacuum invariant SE+ES T=0 . Explicitly, the generators read

(A.2)

where a=1,2,3 are the Pauli matrices and . These are the generators of SU(2) V ×U(1) V .

(A.3)

with

(A.4)

Notice that S 4,S 5 and S 6 are the generators of another SU(2) V algebra and that SO(4)≃SU(2) V ×SU(2) V.

The remaining generators which do not leave the vacuum invariant are

(A.5)

and

(A.6)

with

(A.7)

The generators are normalized as follows:

(A.8)

The electroweak subgroup can be embedded in SU(4), as explained in detail in [15].

The S a generators, with a=1,…,4, together with the X a generators, with a=1,2,3, generate an SU(2) L ×SU(2) R ×U(1) V algebra. This is easily seen by changing the generator basis from (S a,X a) to (L a,R a), where

(A.9)

with a=1,2,3. The electroweak gauge group is then obtained by gauging SU(2) L , and the U(1) Y subgroup of SU(2) R ×U(1) V , where

(A.10)

The gauging of the electroweak group breaks explicitly SU(4) down to \(\mathcal{H}'=\mathit{SU}(2)_{L} \times U(1)_{V} \times U(1)_{Y}\). As SU(4) spontaneously breaks to \(\mathcal{H}= \mathit{SO}(4)\), SU(2) L ×SU(2) R breaks to SU(2) V , which acts as a custodial isospin, which insures that the ρ parameter is equal to one at tree level.

As a consequence of the explicit and spontaneous breaking of SU(4), the unbroken subgroup is given by \(\mathcal{H} \cap\mathcal{H}'=U(1)_{V} \times U(1)_{Q} \). The electromagnetic group is generated by

(A.11)

We also normalize the U(1) V generators in the following way:

(A.12)

In order to couple the PGB to the SM fermions we study the transformation properties of the matrix U. Under SU(4), the matrix U transforms as a two index symmetric tensor, or in other words U transforms like the irreducible representation 10 of SU(4).

Knowing the embedding of the electroweak generators in the SU(4) algebra it is possible to decompose the representation 10 according to the electroweak gauge group. It is useful to consider the following decomposition chain:

(A.13)

according to which

(A.14)
(A.15)

It is convenient to introduce the following notation:

(A.16)

as well as

(A.17)

with the following form for the projectors P:

(A.18)

Appendix B: Standard Model quantum numbers

figure a

with i=1,2,3.

Appendix C: An effective Lagrangian for gluon fusion

An effective interaction term for the PGB production via gluon fusion reads

$$ \mathcal{L}=-\frac{1}{4}~g(\tau)~G_{\mu\nu}^{a}G^{\mu\nu,a} \varPi_{X} \varPi^{\dagger}_{X}, \quad X =\{ UU, UD, DD \} . $$
(C.1)

With our convention for the couplings y 1 and y 2, all the PGBs couple to the top proportionally to its mass, similarly to the SM Higgs. Therefore the function g(τ) can be read off directly from the Higgs-gluon-gluon effective coupling upon substituting the top Yukawa coupling with (27), and replacing \(m_{H}^{2}\) in the loop factor with (p+q)2, where p and q are the momenta of the final state PGBs. We have \(\tau=\frac{4 m_{t}^{2}}{(p+q)^{2}}\) and

$$ g(\tau)=-\frac{i}{2 F}\frac{\alpha_{s}\sqrt{\sqrt{2}G_{F}}}{3\pi }n_{q}\biggl \vert \frac{1}{2}\tau\bigl(1+(1-\tau)f(\tau)\bigr)\biggr \vert , $$
(C.2)

where

$$ f(\tau)= \begin{cases} -\frac{1}{4} ( -i \pi+\log\frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}} )^{2}, &\mbox{if}\ \tau\ge1 , \\ \noalign{\vspace*{6pt}} ( \sin^{-1} ( 1/\sqrt{\tau} ) )^{2}, & \mbox{if}\ \tau< 1. \end{cases} $$
(C.3)

Of course α s and G F are, respectively, the strong and the Fermi coupling constant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hapola, T., Mescia, F., Nardecchia, M. et al. Pseudo Goldstone Bosons phenomenology in Minimal Walking Technicolor. Eur. Phys. J. C 72, 2063 (2012). https://doi.org/10.1140/epjc/s10052-012-2063-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2063-5

Keywords

Navigation