Skip to main content
Log in

Detecting the Higgs boson(s) in λSUSY

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider recent experimental limits on the scalar bosons in the λSUSY framework, in which the masses of the scalar particles are increased already at tree level via a largish supersymmetric coupling between the usual Higgs doublets and a singlet. We analyze in particular the two lightest scalars, discussing the regions of parameter space excluded by LHC data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We call this framework λSUSY to stress the importance of the higher value of the λ coupling.

  2. Although there are also regions in which the lightest scalar is simply a heavier standard Higgs boson (resembling what happens in other realizations of λSUSY, see [23, 24]) and is thus now excluded.

  3. This can be justified since the singlino component of the LSP is always below 10 % for our choice of parameters.

  4. The case of the lightest scalar has been analyzed in detail in [22], where, however, the experimental LHC bounds were not taken into account.

References

  1. See http://cdsweb.cern.ch/record/1399607?ln=en

  2. See https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

  3. U. Ellwanger, C. Hugonie, A.M. Teixeira, The next-to-minimal supersymmetric standard model. Phys. Rep. 496, 1–77 (2010) arXiv:0910.1785 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed. Int. J. Mod. Phys. A 25, 3505–3602 (2010). arXiv:0906.0777 [hep-ph]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. C. Hugonie, S. Moretti, Higgs sector of nonminimal supersymmetric models at future hadron colliders. eConf C010630, P108 (2001). arXiv:hep-ph/0110241 [hep-ph]

    Google Scholar 

  6. U. Ellwanger, J.F. Gunion, C. Hugonie, Establishing a no lose theorem for NMSSM Higgs boson discovery at the LHC. arXiv:hep-ph/0111179 [hep-ph]

  7. U. Ellwanger, J.F. Gunion, C. Hugonie, S. Moretti, Towards a no lose theorem for NMSSM Higgs discovery at the LHC. arXiv:hep-ph/0305109 [hep-ph]. Prepared for the LHC/LC Study Group Report

  8. D.J. Miller, S. Moretti, An interesting NMSSM scenario at the LHC and LC: a contribution to the LHC/LC study group. arXiv:hep-ph/0403137 [hep-ph]

  9. U. Ellwanger, J.F. Gunion, C. Hugonie, Difficult scenarios for NMSSM Higgs discovery at the LHC. J. High Energy Phys. 0507, 041 (2005). arXiv:hep-ph/0503203 [hep-ph]

    Article  ADS  Google Scholar 

  10. S. Moretti, S. Munir, P. Poulose, Another step towards a no-lose theorem for NMSSM Higgs discovery at the LHC. Phys. Lett. B 644, 241–247 (2007). arXiv:hep-ph/0608233 [hep-ph]

    Article  ADS  Google Scholar 

  11. J. Forshaw, J. Gunion, L. Hodgkinson, A. Papaefstathiou, A. Pilkington, Reinstating the ‘no-lose’ theorem for NMSSM Higgs discovery at the LHC. J. High Energy Phys. 0804, 090 (2008). arXiv:0712.3510 [hep-ph]

    Article  Google Scholar 

  12. A. Belyaev, S. Hesselbach, S. Lehti, S. Moretti, A. Nikitenko et al., The scope of the 4 tau channel in Higgs-strahlung and vector boson fusion for the NMSSM no-lose theorem at the LHC. arXiv:0805.3505 [hep-ph]

  13. A. Belyaev, J. Pivarski, A. Safonov, S. Senkin, A. Tatarinov, LHC discovery potential of the lightest NMSSM Higgs in the h 1a 1 a 1→4 muons channel. Phys. Rev. D 81, 075021 (2010). arXiv:1002.1956 [hep-ph]

    Article  ADS  Google Scholar 

  14. M. Almarashi, S. Moretti, Low mass Higgs signals at the LHC in the next-to-minimal supersymmetric standard model. Eur. Phys. J. C 71, 1618 (2011). arXiv:1011.6547 [hep-ph]

    Article  ADS  Google Scholar 

  15. M.M. Almarashi, S. Moretti, Muon signals of very light CP-odd Higgs states of the NMSSM at the LHC. Phys. Rev. D 83, 035023 (2011). arXiv:1101.1137 [hep-ph]

    Article  ADS  Google Scholar 

  16. U. Ellwanger, C. Hugonie, Masses and couplings of the lightest Higgs bosons in the (M+1) SSM. Eur. Phys. J. C 25, 297–305 (2002). arXiv:hep-ph/9909260 [hep-ph]

    Article  ADS  Google Scholar 

  17. R. Barbieri, L.J. Hall, A.Y. Papaioannou, D. Pappadopulo, V.S. Rychkov, An alternative NMSSM phenomenology with manifest perturbative unification. J. High Energy Phys. 0803, 005 (2008). arXiv:0712.2903 [hep-ph]

    Article  ADS  Google Scholar 

  18. A. Djouadi, M. Drees, U. Ellwanger, R. Godbole, C. Hugonie et al., Benchmark scenarios for the NMSSM. J. High Energy Phys. 0807, 002 (2008). arXiv:0801.4321 [hep-ph]

    Article  ADS  Google Scholar 

  19. F. Mahmoudi, J. Rathsman, O. Stal, L. Zeune, Light Higgs bosons in phenomenological NMSSM. Eur. Phys. J. C 71, 1608 (2011). arXiv:1012.4490 [hep-ph]

    Article  ADS  Google Scholar 

  20. R. Franceschini, S. Gori, Solving the μ problem with a heavy Higgs boson. J. High Energy Phys. 1105, 084 (2011). arXiv:1005.1070 [hep-ph]

    Article  ADS  Google Scholar 

  21. J. Cao, J.M. Yang, Current experimental constraints on NMSSM with large lambda. Phys. Rev. D 78, 115001 (2008). arXiv:0810.0989 [hep-ph]

    Article  ADS  Google Scholar 

  22. E. Bertuzzo, M. Farina, Higgs boson signals in lambda-SUSY with a scale invariant superpotential. arXiv:1105.5389 [hep-ph]

  23. R. Barbieri, L.J. Hall, Y. Nomura, V.S. Rychkov, Supersymmetry without a light Higgs boson. Phys. Rev. D 75, 035007 (2007). arXiv:hep-ph/0607332 [hep-ph]

    Article  ADS  Google Scholar 

  24. L. Cavicchia, R. Franceschini, V.S. Rychkov, Supersymmetry without a light Higgs boson at the CERN LHC. Phys. Rev. D 77, 055006 (2008). arXiv:0710.5750 [hep-ph]

    Article  ADS  Google Scholar 

  25. Y. Kanehata, T. Kobayashi, Y. Konishi, O. Seto, T. Shimomura, Constraints from unrealistic vacua in the next-to-minimal supersymmetric standard model. arXiv:1103.5109 [hep-ph]

  26. N. Arkani-Hamed, A. Delgado, G. Giudice, The well-tempered neutralino. Nucl. Phys. B 741, 108–130 (2006). arXiv:hep-ph/0601041 [hep-ph]

    Article  ADS  Google Scholar 

  27. S. Chatrchyan et al. (CMS Collaboration), Search for the standard model Higgs boson in the decay channel H to ZZ to 4 leptons in pp collisions at sqrt(s) = 7 TeV, arXiv:1202.1997 [hep-ex]

  28. G. Aad et al. (ATLAS Collaboration), Search for the standard model Higgs boson in the decay channel HZZ(∗)→4l with 4.8 fb−1 of pp collision data at sqrt(s) = 7 TeV with ATLAS. Phys. Lett. B 710, 383 (2012). arXiv:1202.1415 [hep-ex]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Riccardo Barbieri for important suggestions and for reading the manuscript. This work is supported in part by the European Programme “Unification in the LHC Era”, contract PITN-GA-2009-237920 (UNILHC). E.B. acknowledges support from the Agence Nationale de la Recherche under contract ANR 2010 BLANC 0413 01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bertuzzo.

Additional information

Laboratoire de la Direction des Sciences de la Matière du Commissariat à l’Energie Atomique et Unité de Recherche associée au CNRS (URA 2306).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertuzzo, E., Farina, M. Detecting the Higgs boson(s) in λSUSY. Eur. Phys. J. C 72, 2054 (2012). https://doi.org/10.1140/epjc/s10052-012-2054-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2054-6

Keywords

Navigation