Skip to main content
Log in

Rip/singularity free cosmology models with bulk viscosity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper we present two concrete models of non-perfect fluid with bulk viscosity to interpret the observed cosmic accelerating expansion phenomena, avoiding the introduction of exotic dark energy. The first model we inspect has a viscosity of the form ζ=ζ 0+(ζ 1ζ 2 q)H by taking into account the decelerating parameter q, and the other model is of the form ζ=ζ 0+ζ 1 H+ζ 2 H 2. We give the exact solutions of such models and further constrain them with the latest Union2 data as well as the currently observed Hubble-parameter dataset (OHD). Then we discuss the fate of universe evolution in these models, which confronts neither future singularity nor little/pseudo rip. From the resulting curves by best-fittings we find a much more flexible evolution processing due to the presence of viscosity while being consistent with the observational data in the region of data fitting. With the bulk viscosity considered, a more realistic universe scenario is characterized comparable with the ΛCDM model but without introducing the mysterious dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.G. Riess et al., Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  2. S. Perlmutter et al., Nature 404, 955 (2000)

    Article  Google Scholar 

  3. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. N. Jarosik et al., Astrophys. J. Suppl. Ser. 192, 14 (2011)

    Article  ADS  Google Scholar 

  5. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  7. R.D. Peccei, J. Sola, C. Wetterich, Phys. Lett. B 195, 183 (1987)

    Article  ADS  Google Scholar 

  8. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  9. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  10. P.J.E. Peebles, B. Ratra, Astrophys. J. 325, L17 (1988)

    Article  ADS  Google Scholar 

  11. I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  12. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582–1585 (1998)

    Article  ADS  Google Scholar 

  13. X.H. Meng, P. Wang, Class. Quantum Gravity 20, 4949 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. X.H. Meng, P. Wang, Class. Quantum Gravity 21, 951 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. X.H. Meng, P. Wang, Class. Quantum Gravity 21, 2029 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. X.H. Meng, P. Wang, Class. Quantum Gravity 22, 23 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. X.H. Meng, P. Wang, Gen. Relativ. Gravit. 36, 1947 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. X.H. Meng, P. Wang, Phys. Lett. B 584, 1 (2004)

    Article  ADS  Google Scholar 

  19. E. Flanagan, Class. Quantum Gravity 21, 417 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Nojiri, S. Odintsov, Phys. Lett. B 576, 5 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S. Nojiri, S. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Vollick, Phys. Rev. D 68, 063510 (2003)

    Article  ADS  Google Scholar 

  23. G. Ellis, arXiv:0811.3529 [astro-ph]

  24. S. Nojiri, S.D. Odintsov, arXiv:1011.0544v4 [gr-qc]

  25. S. Amendola, L. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, Cambridge, 2010), p. 491

    MATH  Google Scholar 

  26. R.R. Caldwell, M. Kamionkowski, Annu. Rev. Nucl. Part. Sci. 59, 397–429 (2009)

    Article  ADS  Google Scholar 

  27. D. Weinberg et al., arXiv:1201.2434 [astro-ph.CO]

  28. S. Weinberg, Astrophys. J. 168, 175 (1971)

    Article  ADS  Google Scholar 

  29. T. Padmanabhan, S.M. Chitre, Phys. Lett. A 120, 433 (1987)

    Article  ADS  Google Scholar 

  30. Ø. Grøn, Astrophys. Space Sci. 173, 191 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  31. I. Brevik, L.T. Heen, Astrophys. Space Sci. 219, 99 (1994)

    Article  ADS  MATH  Google Scholar 

  32. M. Cataldo, N. Cruz, S. Lepe, Phys. Lett. B 619, 5 (2005)

    Article  ADS  Google Scholar 

  33. I. Brevik, A. Hallanger, Phys. Rev. D 69, 024009 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Nojiri, S.D. Odintsov, Phys. Rev. D 72, 023003 (2005)

    Article  ADS  Google Scholar 

  35. S. Capozziello et al., Phys. Rev. D 73, 043512 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  36. I. Brevik, J.M. Børven, S. Ng, Gen. Relativ. Gravit. 38, 907 (2006)

    Article  ADS  MATH  Google Scholar 

  37. I. Brevik, O. Gorbunova, Gen. Relativ. Gravit. 37, 2039 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. B. Li, J.D. Barrow, Phys. Rev. D 79, 103521 (2009)

    Article  ADS  Google Scholar 

  39. J. Chen, Y. Wang, arXiv:0904.2808 [gr-qc]

  40. C.J. Feng, X.Z. Li, Phys. Lett. B 680, 355 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  41. A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265–268 (2001)

    Article  ADS  MATH  Google Scholar 

  42. J.C. Fabris, S.V.B. Goncalves, R. de Sa Ribeiro, Gen. Relativ. Gravit. 38, 495–506 (2006)

    Article  ADS  MATH  Google Scholar 

  43. X.H. Meng, J. Ren, M. Hu, Commun. Theor. Phys. 47, 379 (2007). arXiv:astro-ph/0509250

    Article  ADS  Google Scholar 

  44. X.H. Meng, X. Dou, Commun. Theor. Phys. 52, 377 (2009). arXiv:1012.3045 [astro.ph.CO]

    Article  ADS  MATH  Google Scholar 

  45. J. Ren, X.H. Meng, Phys. Lett. B 633, 1 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Ren, X.H. Meng, Phys. Lett. B 636, 5 (2006). arXiv:astro-ph/0511163

    Article  MathSciNet  ADS  Google Scholar 

  47. M.G. Hu, X.H. Meng, arXiv:astro-ph/0511615

  48. M.G. Hu, X.H. Meng, Phys. Lett. B 635, 186 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  49. I. Brevik, O. Gorbunova, S. Nojiri, S.D. Odintsov, Eur. Phys. J. C 71, 1629 (2011)

    Article  ADS  Google Scholar 

  50. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005). arXiv:hep-th/0501025v2

    Article  ADS  Google Scholar 

  51. J.D. Barrow, Class. Quantum Gravity 21, L79 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. S. Nojiri, S.D. Odintsov, Phys. Lett. B 595, 1 (2004)

    Article  ADS  Google Scholar 

  53. G.L. Murphy, Phys. Rev. D 8, 4231–4233 (1973)

    Article  ADS  Google Scholar 

  54. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  55. P.H. Frampton, K.J. Ludwick, R. Scherrer, Phys. Rev. D 84, 063003 (2011)

    Article  ADS  Google Scholar 

  56. P.H. Frampton et al., arXiv:1108.0067v2 [hep-th]

  57. P.H. Frampton, K.J. Ludwick, R.J. Scherrer, arXiv:1112.2964 [astro.ph.CO]

  58. K. Bamba, R. Myrzakulov, S. Nojiri, S.D. Odintsov, arXiv:1202.4057v2 [physics.gen-ph]

  59. I. Brevik, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 103508 (2011)

    Article  ADS  Google Scholar 

  60. R. Amanullah et al., Astrophys. J. 716, 712 (2010). arXiv:1004.1711 [astro-ph.CO]

    Article  ADS  Google Scholar 

  61. L. Perivolaropoulos, Phys. Rev. D 71, 063503 (2005)

    Article  ADS  Google Scholar 

  62. S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 72, 123519 (2005). arXiv:astro-ph/0511040

    Article  ADS  Google Scholar 

  63. M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, arXiv:1201.6658v1 [astro.ph.CO]

  64. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  65. D. Stern, R. Jimenez, L. Verde et al., J. Cosmol. Astropart. Phys. 2, 8 (2010)

    Article  ADS  Google Scholar 

  66. M. Moresco, A. Cimatti, R. Jimenez et al., arXiv:1201.3609 [astro-ph.CO]

Download references

Acknowledgements

We have benefited from interesting discussions with Prof. S.D. Odintsov, and this work is partly supported by Natural Science Foundation of China under Grant Nos. 11075078 and 10675062 and by the project of knowledge Innovation Program (PKIP) of Chinese Academy of Sciences (CAS) under the grant No. KJCX2.YW.W10 through the KITPC where we have initiated this present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yuan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Xh., Ma, Zy. Rip/singularity free cosmology models with bulk viscosity. Eur. Phys. J. C 72, 2053 (2012). https://doi.org/10.1140/epjc/s10052-012-2053-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2053-7

Keywords

Navigation