Skip to main content
Log in

Conformal linear gravity in de Sitter space II

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

From the group theoretical point of view, it is proved that the theory of linear conformal gravity should be written in terms of a tensor field of rank-3 and mixed symmetry (Binegar et al. in Phys. Rev. D 27:2249, 1983). We obtained such a field equation in de Sitter space (Takook et al. in J. Math. Phys. 51:032503, 2010). In this paper, a proper solution to this equation is obtained as a product of a generalized polarization tensor and a massless scalar field and then the conformally invariant two-point function is calculated. This two-point function is de Sitter invariant and free of any pathological large-distance behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This was first established for the Maxwell equations in [3, 4], for massless spin 1/2 in [5], and for any spin in [6, 7].

  2. Note that in dS space, concept of mass does not exist by itself as a conserved quantity. The term “massive” is referred to fields that in their zero curvature limit reduce to massive Minkowskian fields [8]. The concept of light-cone propagation, however, does exist and leads to the conformal invariance.

References

  1. B. Binegar, C. Fronsdal, W. Heidenreich, Phys. Rev. D 27, 2249 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  2. M.V. Takook, M.R. Tanhayi, S. Fatemi, J. Math. Phys. 51, 032503 (2010). arXiv:0903.5249v1

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Bateman, Proc. Lond. Math. Soc. 7, 70 (1909)

    Article  MathSciNet  Google Scholar 

  4. E. Cunningham, Proc. Lond. Math. Soc. 8, 77 (1909)

    Article  MathSciNet  Google Scholar 

  5. P.A.M. Dirac, Ann. Math. 37, 429 (1936)

    Article  MathSciNet  Google Scholar 

  6. A. McLennan, Nuovo Cimento 3, 1360 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.S. Lomont, Nuovo Cimento 22, 673 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.O. Barut, A. Böhm, J. Math. Phys. 11, 2938 (1970)

    Article  ADS  Google Scholar 

  9. E. Angelopoulos, M. Laoues, Rev. Math. Phys. 10, 271 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Allen, M. Turyn, Nucl. Phys. B 292, 813 (1987)

    Article  ADS  Google Scholar 

  11. E.G. Floratos, J. Iliopoulos, T.N. Tomaras, Phys. Lett. B 197, 373 (1987)

    Article  ADS  Google Scholar 

  12. I. Antoniadis, E. Mottola, J. Math. Phys. 32, 1037 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. H.L. Ford, Phys. Rev. D 31, 710 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  14. I. Antoniadis, J. Iliopoulos, T.N. Tomaras, Phys. Rev. Lett. 56, 1319 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  15. N.C. Tsamis, R.P. Woodard, Phys. Lett. B 292, 269 (1992)

    Article  ADS  Google Scholar 

  16. N.C. Tsamis, R.P. Woodard, Commun. Math. Phys. 162, 217 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. I. Antoniadis, J. Iliopoulos, T.N. Tomaras, Nucl. Phys. B 462, 437 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A. Higuchi, S.S. Kouris, Class. Quantum Gravity 17, 3077 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. A. Higuchi, S.S. Kouris, Class. Quantum Gravity 20, 3005 (2003)

    Article  ADS  MATH  Google Scholar 

  20. H.J. de Vega, J. Ramirez, N. Sanchez, Phys. Rev. D 60, 044007 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  21. S.W. Hawking, T. Hertog, N. Turok, Phys. Rev. D 62, 063502 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  22. M.V. Takook, in Proceeding of the Wigsym6, Istanbul, Turkey, August 1999

    Google Scholar 

  23. M.V. Takook, Int. Proc. J.. 3(1), 1–8 (2009)

    Google Scholar 

  24. M. Dehghani, S. Rouhani, M.V. Takook, M.R. Tanhayi, Phys. Rev. D 77, 064028 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. B. Allen, B. Folacci, Phys. Rev. D 35, 3771 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  26. J.P. Gazeau, J. Renaud, M.V. Takook, Class. Quantum Gravity 17, 1415 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A.G. Riess et al. (Supernova Search Team Collaboration), Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  28. S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 567 (1999)

    Article  ADS  Google Scholar 

  29. U. Seljak, A. Slosar, P. McDonald, J. Cosmol. Astropart. Phys. 014, 610 (2006)

    Google Scholar 

  30. A.G. Riess et al., Astrophys. J. 98, 659 (2007)

    Google Scholar 

  31. A.D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic, Chur, 1990)

    Google Scholar 

  32. P. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  33. A. Jaros, M.E. Peskin, Int. J. Mod. Phys. A 715, 1581 (2000)

    Google Scholar 

  34. J.P. Gazeau, M. Hans, J. Math. Phys. 29, 2533 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. M. Levy-Nahas, J. Math. Phys. 8, 1211 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. H. Bacry, J.M. Levy-Leblond, J. Math. Phys. 9, 1605 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. P.A.M. Dirac, Ann. Math. 36, 657 (1935)

    Article  MathSciNet  Google Scholar 

  38. G. Mack, A. Salam, Ann. Phys. 53, 174 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  39. H.A. Kastrup, Phys. Rev. 150, 1189 (1964)

    Google Scholar 

  40. C.R. Preitschop, M.A. Vosiliev, Nucl. Phys. B 549, 450 (1999)

    Article  ADS  Google Scholar 

  41. S. Behroozi, S. Rouhani, M.V. Takook, M.R. Tanhayi, Phys. Rev. D 74, 124014 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  42. T. Garidi, J.P. Gazeau, M.V. Takook, J. Math. Phys. 44, 3838 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. T. Garidi, J.P. Gazeau, S. Rouhani, M.V. Takook, J. Math. Phys. 49, 032501 (2008). arXiv:gr-qc/0608004

    Article  MathSciNet  ADS  Google Scholar 

  44. J.P. Gazeau, M.V. Takook, J. Math. Phys. 41, 5920 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. J. Bros, J.P. Gazeau, U. Moschella, Phys. Rev. Lett. 73, 1746 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. J. Bros, U. Moschella, Rev. Math. Phys. 8, 327 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. B. Allen, T. Jacobson, Commun. Math. Phys. 103, 669 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. A. Folacci, J. Math. Phys. 32, 2828 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  49. M.V. Takook, Mod. Phys. Lett. A 16, 1691 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. N.A. Chernikov, E.A. Tagirov, Ann. Inst. Henri Poincaré IX, 109 (1968)

    MathSciNet  Google Scholar 

  51. M.V. Takook, M.R. Tanhayi, J. High Energy Phys. 1012, 044 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  52. K.S. Stelle, Phys. Rev. D 16, 953 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  53. E.S. Fradkin, A.A. Tseytlin, Nucl. Phys. B 201, 469 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  54. C.M. Bender, P.D. Mannheim, Phys. Rev. Lett. 100, 110402 (2008)

    Article  ADS  Google Scholar 

  55. C.M. Bender, P.D. Mannheim, Phys. Rev. D 78, 025022 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  56. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. D.C. Rodrigues, Phys. Rev. D 77, 023534 (2008)

    Article  ADS  Google Scholar 

  58. M.V. Takook, H. Pejhan, M. Tanhayi-Ahari, M.R. Tanhayi, Casimir effect for a scalar field via Krein quantization. arXiv:1204.6001

  59. J. Dixmier, Bull. Soc. Math. Fr. 89, 9 (1961)

    MathSciNet  MATH  Google Scholar 

  60. B. Takahashi, Bull. Soc. Math. Fr. 91, 289 (1963)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Ardeshirzade and E. Ariamand for their collaboration in the early stage of this work. One of us, MRT, is grateful to S. Fatemi for her useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Tanhayi.

Appendices

Appendix A: Some mathematical preliminaries

In this appendix we first review the Krein space briefly and then collect some useful relations.

Hilbert space is built by a set of modes with positive norms:

$${\mathcal{H}}= \biggl\{ \sum_{k\geq0}\alpha_k \phi_k;\sum_{k\geq0}|\alpha_k|^2< \infty \biggr\}, \quad \mbox{with}\ (\phi_1,\phi_2)>0. $$

Krein space is defined as a direct sum of an Hilbert space and an anti-Hilbert space (negative inner product space):

$${\mathcal{K}}= {\mathcal{H}}\oplus\bar{\mathcal{H}}, $$

where \(\bar{\mathcal{H}}\) stands for the anti-Hilbert space. Note that due to the indefinite inner product space, some states are allowed to have negative norm. These modes are only used as a mathematical tool in renormalization procedure and are ruled out by imposing some conditions. In fact as discussed in [26], in Krein space setup, minimally coupled scalar field is defined on non-Hilbertian Fock space. This is followed by the fact that the one-particle sector is itself not a Hilbert space since the total space (Krein space) is equipped with an indefinite inner product. The physical space is the quotient space: Krein space/negative-norm space. This is a Hilbert space carrying the UIR of the de Sitter group. It is shown that quantization in Krein space either removes some infinities (for example the vacuum energy vanishes without any need of reordering the terms), or at least regularizes the theory (for more details see [58] and references therein).

In what follows, some useful relations that are used in this paper, are listed: \(\bar{\partial}_{\alpha}\) is the tangential (or transverse) derivative on dS space, defined by

$$\bar{\partial}_{\alpha}=\theta_{\alpha\beta}\partial^{\beta }= \partial_{\alpha}+x_{\alpha}x\cdot\partial,\quad \mbox{with}\ x\cdot \bar{\partial}=0, $$

and also one can define

$$ \begin{aligned} &M_{\alpha\beta}\equiv-i(x_{\alpha} \partial_{\beta}-x_{\beta }\partial_{\alpha})= -i(x_{\alpha}\bar{\partial}_{\beta}-x_{\beta}\bar{\partial}_{\alpha }), \\ &S_{\alpha\beta} \mathcal{K}_{\gamma\delta}\equiv-i(\eta_{\alpha\gamma } \mathcal{K}_{\beta \delta}-\eta_{\beta\gamma} \mathcal{K}_{\alpha\delta} + \eta_{\alpha\delta} \mathcal{K}_{\beta\gamma}-\eta_{\beta\delta} \mathcal{K}_{\alpha\gamma}). \end{aligned} $$
(A.1)

Operator \(Q^{(1)}_{2}\) commutes with the action of the group generators, thus, it is constant in each UIR. The eigenvalues of \(Q^{(1)}_{2}\) can be used to classify the UIR’s i.e.,

$$ \bigl(Q^{(1)}_2-\bigl\langle Q^{(1)}_2 \bigr\rangle\bigr){\mathcal{K}}(x)=0. $$
(A.2)

Following Dixmier [59], one can get a classification scheme using a pair (p,q) of parameters involved in the following possible spectral values of the Casimir operators:

$$ \begin{aligned} &Q^{(1)}_{p}= \bigl(-p(p+1)-(q+1) (q-2) \bigr)I_d , \\ &Q^{(2)}_{p}= \bigl(-p(p+1)q(q-1) \bigr)I_d. \end{aligned} $$
(A.3)

Three types of UIR are distinguished for SO(1,4) according to the range of values of the parameters q and p [59, 60], namely: principal, complementary and discrete series. The flat limit indicates that for the principal and complementary series the value of p bears the meaning of spin. For example in discrete series p=q=2 have a Minkowskian interpretation as a massless spin-2 particle.

The action of the Casimir operators Q 1 and Q 2 can be brought in the more explicit form

$$ \begin{aligned}[b] Q_1 K_{\alpha} &=(Q_0-2)K_{\alpha}+2x_{\alpha}\partial\cdot K -2 \partial_{\alpha} x\cdot K \\ &=(Q_0-2)K_{\alpha}+2x_{\alpha}\bar{\partial}\cdot K -2 \bar{\partial}_{\alpha} x\cdot K \\ &\quad +2x_\alpha(x \cdot K), \end{aligned} $$
(A.4)
$$ \begin{aligned}[b] Q_2 {\mathcal{K}}_{\alpha\beta}&=(Q_0-6){ \mathcal{K}}_{\alpha \beta}+2{\mathcal{S}}x_{\alpha}\partial\cdot{ \mathcal{K}}_{\beta} \\ &\quad -2{\mathcal{S}}\partial_{\alpha}x\cdot{ \mathcal{K}}_{\beta}+2 \eta_{\alpha\beta}{ \mathcal{K}}'. \end{aligned} $$
(A.5)

The two-point function (4.8) with the choice of x′ reads

$${\mathcal{W}}_{\alpha\beta\alpha'\beta'}\bigl(x,x'\bigr)=\Delta'_{\alpha\beta \alpha'\beta'} \bigl(x,\partial,x',\partial'\bigr){\mathcal{W}} \bigl(x,x'\bigr), $$

where

$$ \begin{aligned}[b] &\Delta'_{\alpha\beta \alpha'\beta'}\bigl(x, \partial,x',\partial'\bigr) \\ &\quad =-\frac{2}{3}{\mathcal{S}}\theta' \theta \cdot \bigl( \theta' \cdot \theta -D'_{1}\bigl[x' \cdot \theta+\theta \cdot \bar{\partial}'\bigr] \bigr) \\ &\qquad +{\mathcal{S}} {\mathcal{S}}'\theta \cdot \theta' \bigl( \theta' \cdot \theta -D'_{1}\bigl[x' \cdot \theta+\theta \cdot \bar{\partial}'\bigr] \bigr) \\ &\qquad +\frac{1}{3} D'_2{\mathcal{S}} \bigl(4 \bigl(x' \cdot {\theta}\bigr) + \bigl({\theta} \cdot {\bar{\partial}}' \bigr) - x'({\theta}) \bigr) \\ &\qquad \times \bigl(\theta' \cdot \theta -D'_{1} \bigl[x' \cdot \theta+\theta \cdot \bar{\partial}'\bigr] \bigr), \end{aligned} $$
(A.6)

note that the primed operators act only on the primed coordinates.

To obtain the two-point function, the following identities become important:

(A.7)
(A.8)
(A.9)

Appendix B: Mathematical relations underlying Eq. (3.8)

Substituting K in Eq. (3.3-II), yields

(B.1)

then the general solution for ϕ 3 can be written as

$$ \phi_3= c_1(x \cdot Z_2) \phi_2 + c_2(Z_2 \cdot \bar{\partial}) \phi_2, $$
(B.2)

where c 1 and c 2 are two constants. In order to find c 1 and c 2, we do the following steps:

Step(I):

the divergenceless condition \((Q_{0}\phi_{3}=4x \cdot Z_{2}\phi_{2}+Z_{2} \cdot \bar{\partial}\phi_{2})\), together with (B.1), results in

(B.3)

on the other hand from Eq. (3.7) we have

(B.4)

from (B.3) and (B.4), one obtains

$$ \begin{aligned} &Q_0(Q_0-2)^2(Z_2 \cdot \bar{\partial})\phi_2=0, \\ &Q_0(Q_0-2)^2(Q_0+4) (x \cdot Z_2)\phi_2=0. \end{aligned} $$
(B.5)

Substituting (B.5) in (B.2) results in

$$ Q_0(Q_0-2)^2(Q_0+4) \phi_3=0. $$
(B.6)

After doing some straightforward algebra, one obtains the reduced forms of (B.5) and (B.6) as follows:

(B.7)

or

$$ (Q_0-2)^2(Q_0+4)\phi_3=0. $$
(B.8)

Step(II):

Using the divergenceless condition and (B.1), one gets

(B.9)

Combining (B.9) and (B.4) results in

(B.10)

From (B.3), (B.10), and (B.7), we get

(B.11)

and using the divergenceless condition and (B.7), the above equation can be written as

(B.12)

From Eqs. (B.2) and (B.12), we obtain c 1−2c 2=1, and substituting (B.2) into (B.1) together with (B.7) results in c 1=c 2=−1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takook, M.V., Pejhan, H. & Tanhayi, M.R. Conformal linear gravity in de Sitter space II. Eur. Phys. J. C 72, 2052 (2012). https://doi.org/10.1140/epjc/s10052-012-2052-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2052-8

Keywords

Navigation