Skip to main content
Log in

An inflationary scenario taking into account of possible dark energy effects in the early universe

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the possible effect of cosmological-constant type dark energy during the inflation period of the early universe. This is accommodated by a new dispersion relation in de Sitter space. The modified inflation model of a minimally coupled scalar field is still able to yield an observation-compatible scale-invariant primordial spectrum, simultaneously having the potential to generate a spectrum with lower power at large scales. A qualitative match to the WMAP 7-year data is presented. We obtain an Ω Λ of the same order of that in the Λ-CDM model. Possible relations between the de Sitter scenario and Doubly Special Relativity (DSR) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Jarosik et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: sky maps, systematic errors, and basic results. Astrophys. J. Suppl. Ser. 192, 14 (2011) (The WMAP 7-year data is publicly available on the website http://lambda.gsfc.nasa.gov/product/map/current/m_products.cfm)

    Article  ADS  Google Scholar 

  2. E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  3. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682 (1979) [Pisma Zh. Eksp. Teor. Fiz. 30, 719 (1979)]

    ADS  Google Scholar 

  4. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  5. V.F. Mukhanov, G.V. Chibisov, Quantum fluctuation and ‘nonsingular’ universe. JETP Lett. 33, 532 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)]

    ADS  Google Scholar 

  6. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  7. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  8. A.D. Linde, Coleman–Weinberg theory and a new inflationary universe scenario. Phys. Lett. B 114, 431 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  9. A.D. Linde, Temperature dependence of coupling constants and the phase transition in the Coleman–Weinberg theory. Phys. Lett. B 116, 340 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  10. A.D. Linde, Scalar field fluctuations in expanding universe and the new inflationary universe scenario. Phys. Lett. B 116, 335 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  12. S.W. Hawking, The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982)

    Article  ADS  Google Scholar 

  13. A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  14. A.H. Guth, S.Y. Pi, Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110 (1982)

    Article  ADS  Google Scholar 

  15. J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983)

    Article  ADS  Google Scholar 

  16. V.F. Mukhanov, Gravitational instability of the universe filled with a scalar field. JETP Lett. 41, 493 (1985) [Pisma Zh. Eksp. Teor. Fiz. 41, 402 (1985)]

    ADS  Google Scholar 

  17. V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  18. V.F. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  19. H. Kurki-Suonio, Physics of the cosmic microwave background and the Planck mission, in Proceedings of the 2010 CERN Summer School, Raseborg (Finland), submitted for publication in a CERN Yellow Report (2010). arXiv:1012.5204v1

  20. D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Power spectra and WMAP-derived parameters. Astrophys. J. Suppl. Ser. 192, 16 (2011)

    Article  ADS  Google Scholar 

  21. J.M. Cline, P. Crotty, J. Lesgourgues, Does the small CMB quadrupole moment suggest new physics? J. Cosmol. Astropart. Phys. 9 (2003)

  22. G. Efstathiou, Is the low CMB quadrupole a signature of spatial curvature? Mon. Not. R. Astron. Soc. 343, L95 (2003). arXiv:astro-ph/0303127

    Article  ADS  Google Scholar 

  23. H. Liu, S.-L. Xiong, T.-P. Li, The origin of the WMAP quadrupole (2010). arXiv:1003.1073v2

  24. H. Liu, T.-P. Li, Observational scan induced artificial CMB anisotropy. Astrophys. J. (2011, to be published). arXiv:1003.1073v2

  25. M. Kawasaki, F. Takahashi, Inflation model with lower multipoles of the CMB suppressed. Phys. Lett. B 570, 151 (2003)

    Article  ADS  Google Scholar 

  26. B. Feng, X.-M. Zhang, Double inflation and the low CMB quadrupole. Phys. Lett. B 570, 145 (2003)

    Article  ADS  Google Scholar 

  27. C.R. Contaldi et al., Suppressing the lower multipoles in the CMB anisotropies. J. Cosmol. Astropart. Phys. 9 (2003)

  28. Y.-S. Piao, Possible explanation to a low CMB quadrupole. Phys. Rev. D 71, 087301 (2005)

    Article  ADS  Google Scholar 

  29. L. Kofman, G.R. Blumenthal, H. Hodges, J.R. Primack, Generation of nonflat and nongaussian perturbations from inflation. ASP Conf. Ser. 15, 339 (1991)

    ADS  Google Scholar 

  30. H.M. Hodges, G.R. Blumenthal, L.A. Kofman, J.R. Primack, Nonstandard primordial fluctuations from a polynomial inflaton potential. Nucl. Phys. B 335, 197 (1990)

    Article  ADS  Google Scholar 

  31. D.C. Rodrigues, Anisotropic cosmological constant and the CMB quadrupole anomaly. Phys. Rev. D 77, 023534 (2008)

    Article  ADS  Google Scholar 

  32. C.J. Copi, Large-angle anomalies in the CMB. Adv. Astron. 2010, 847541 (2010)

    Article  Google Scholar 

  33. C.L. Bennett et al., Seven-year Wilkinson Microwave Anisotropy Probe (Wmap) observations: Are there cosmic microwave background anomalies? Astrophys. J. Suppl. Ser. 192, 17 (2011)

    Article  ADS  Google Scholar 

  34. R.H. Brandenberger, P.M. Ho, Noncommutative spacetime, stringy spacetime uncertainty principle, and density fluctuations. Phys. Rev. D 66, 023517 (2002). arXiv:hep-th/0203119

    Article  MathSciNet  ADS  Google Scholar 

  35. R.H. Brandenberger, Trans-Planckian physics and inflationary cosmology, in Proceedings of the 2002 International Symposium on Cosmology and Particle Astrophysics. vol. 101 (2003). arXiv:hep-th/0210186v2

    Google Scholar 

  36. J. Martin, R.H. Brandenberger, Trans-Planckian problem of inflationary cosmology. Phys. Rev. D 63, 123501 (2001)

    Article  ADS  Google Scholar 

  37. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003). arXiv:astro-ph/0207347v2

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Z. Chang, S.-X. Chen, C.-B. Guan, Cosmic ray threshold anomaly and kinematics in the dS spacetime (2004). arXiv:astro-ph/0402351v1

  39. Z. Chang, S.-X. Chen, C.-B. Guan, C.-G. Huang, Cosmic ray threshold in an asymptotically DS spacetime. Phys. Rev. D 71, 103007 (2005). arXiv:astro-ph/0505612v1

    Article  ADS  Google Scholar 

  40. H.-Y. Guo, C.-G. Huang, Z. Xu, B. Zhou, On Beltrami model of de Sitter spacetime. Mod. Phys. Lett. A 19, 1701 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. A. Riotto, Inflation and the theory of cosmological perturbations. Lectures given at the: Summer School on Astroparticle Physics and Cosmology (2002). arXiv:hep-ph/0210162v1

  42. S. Dodelson, Modern Cosmology (Elsevier, Singapore, 2003)

    Google Scholar 

  43. C.-P. Ma, E. Bertschinger, Cosmological perturbation-theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 455, 7 (1995). arXiv:astro-ph/9506072v1

    Article  ADS  Google Scholar 

  44. U. Seljak, M. Zaldarriaga, A line of sight approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437 (1996). arXiv:astro-ph/9603033

    Article  ADS  Google Scholar 

  45. M. Bucher, K. Moodley, N. Turok, The general primordial cosmic perturbation. Phys. Rev. D 62, 083508 (2000)

    Article  ADS  Google Scholar 

  46. A. Lewis, A. Challinor, Code for anisotropies in the microwave background (CAMB) (2011). http://camb.info/ (This code is based on CMBFAST by U. Seljak and M. Zaldarriaga (1996). http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm

  47. O. Lahav, A. Liddle, The cosmological parameters. Appearing in the 2010 Review of Particle Physics, available on the PDG website at http://pdg.lbl.gov/2011/astrophysics-cosmology/astro-cosmo.html or http://pdg.lbl.gov/2011/reviews/rpp2011-rev-cosmic-microwave-background.pdf

  48. C.L. Bennett et al., Four-year COBE* DMR cosmic microwave background observations: maps and basic results. Astrophys. J. Lett. 464 (1996)

  49. C.B. Netterfield et al., A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 571, 604 (2002). arXiv:astro-ph/0104460

    Article  ADS  Google Scholar 

  50. S. Hanany et al., MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophys. J. 545, L5 (2000). arXiv:astro-ph/0005123

    Article  ADS  Google Scholar 

  51. N.W. Halverson et al., DASI first results: a measurement of the cosmic microwave background angular power spectrum. Astrophys. J. 568, 38 (2002). arXiv:astro-ph/0104489

    Article  ADS  Google Scholar 

  52. P.F. Scott et al., First results from the very small array—III. The CMB power spectrum. Mon. Not. R. Astron. Soc. 341, 1076 (2003). arXiv:astro-ph/0205380

    Article  ADS  Google Scholar 

  53. T.J. Pearson et al., The anisotropy of the microwave background to =3500: mosaic observations with the Cosmic Background Imager. Astrophys. J. 591, 556 (2003). arXiv:astro-ph/0205388

    Article  ADS  Google Scholar 

  54. CBI Supplementary Data, 10 July 2002. http://www.astro.caltech.edu/~tjp/CBI/data/

  55. A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: A Monte-Carlo approach. Phys. Rev. D 66, 103511 (2002). arXiv:astro-ph/0205436

    Article  ADS  Google Scholar 

  56. H.Y. Guo, Special relativity and theory of gravity via maximum symmetry and localization. Sci. China Ser. A 51, 568 (2008). doi:10.1007/s11425-007-0166-5

    Article  MathSciNet  MATH  Google Scholar 

  57. G. Amelino-Camelia, Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002). arXiv:gr-qc/0012051

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. G. Amelino-Camelia, Testable scenario for relativity with minimum-length. Phys. Lett. B 510, 255 (2001). arXiv:hep-th/0012238

    Article  ADS  MATH  Google Scholar 

  59. G. Amelino-Camelia, Doubly special relativity. Nature 418, 34 (2002). arXiv:gr-qc/0207049

    Article  ADS  Google Scholar 

  60. J. Kowalski-Glikman, De sitter space as an arena for doubly special relativity. Phys. Lett. B 547, 291 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. J. Kowalski-Glikman, Introduction to doubly special relativity. Lect. Notes Phys. 669, 131 (2005)

    Article  ADS  Google Scholar 

  62. H.Y. Guo et al., Snyder’s model—de Sitter special relativity duality and de Sitter gravity. Class. Quantum Gravity 24, 4009 (2007)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Z., Li, MH., Li, X. et al. An inflationary scenario taking into account of possible dark energy effects in the early universe. Eur. Phys. J. C 72, 1915 (2012). https://doi.org/10.1140/epjc/s10052-012-1915-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1915-3

Keywords

Navigation