Skip to main content
Log in

On ‘light’ fermions and proton stability in ‘big divisor’ D3/D7 large volume compactifications

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Building on our earlier work (Misra and Shukla, Nucl. Phys. B 827:112, 2010; Phys. Lett. B 685:347–352, 2010), we show the possibility of generating “light” fermion mass scales of MeV–GeV range (possibly related to the first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-brane restricted to (in principle) stacks of fluxed D7-branes wrapping the “big” divisor Σ B . This part of the paper is an expanded version of the latter half of Sect. 3 of a published short invited review (Misra, Mod. Phys. Lett. A 26:1, 2011) written by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, and we estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 1061 years. Based on GLSM calculations in (Misra and Shukla, Nucl. Phys. B 827:112, 2010) for obtaining the geometric Kähler potential for the “big divisor,” using further the Donaldson’s algorithm, we also briefly discuss in the first of the two appendices the metric for the Swiss-Cheese Calabi–Yau used, which we obtain and which becomes Ricci flat in the large-volume limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Misra, P. Shukla, Swiss Cheese D3/D7 soft SUSY breaking. Nucl. Phys. B 827, 112 (2010). arXiv:0906.4517 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A. Misra, P. Shukla, Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications. Phys. Lett. B 685, 347–352 (2010). arXiv:0909.0087 [hep-th]

    Article  ADS  Google Scholar 

  3. A. Misra, ‘Big’ divisor D3/D7 Swiss Cheese phenomenology. Mod. Phys. Lett. A 26, 1 (2011). arXiv:1010.2273 [hep-th]

    Article  ADS  MATH  Google Scholar 

  4. V. Balasubramanian, P. Berglund, J.P. Conlon, F. Quevedo, Systematics of moduli stabilisation in Calabi–Yau flux compactifications. J. High Energy Phys. 0503, 007 (2005). arXiv:hep-th/0502058

    Article  MathSciNet  ADS  Google Scholar 

  5. T. Kitazoe, K. Tanaka, Fermion mass relations from a superstring inspired model. Z. Phys. C, Part. Fields 36, 189–192 (1987)

    Article  Google Scholar 

  6. I. Antiniadis, T.R. Taylor, Fermion masses in superstring theory. Nucl. Phys. B, Proc. Suppl. 41, 279–287 (1995). arXiv:hep-ph/9411218

    Article  ADS  Google Scholar 

  7. T. Gherghetta, Dirac neutrino masses with Planck scale lepton number violation. Phys. Rev. Lett. 92, 161601 (2004). arXiv:hep-ph/0312392

    Article  ADS  Google Scholar 

  8. Y. Grossman, M. Neubert, Neutrino masses and mixings in non-factorizable geometry. Phys. Lett. B 474, 361 (2000). arXiv:hep-ph/9912408

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. N. Arkani-Hamed, Y. Grossman, Light active and sterile neutrinos from compositeness. Phys. Lett. B 459, 179 (1999). arXiv:hep-ph/9806223

    Article  ADS  Google Scholar 

  10. R.N. Mohapatra, P.B. Pal, Massive Neutrinos in Physics and Astrophysics (World Scientific, Singapore, 1991)

    Google Scholar 

  11. K.R. Dienes, E. Dudas, T. Gherghetta, Light neutrinos without heavy mass scales: a higher-dimensional Seesaw mechanism. Nucl. Phys. B 557, 25 (1999). arXiv:hep-ph/9811428

    Article  ADS  Google Scholar 

  12. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, J. March-Russell, Neutrino masses from large extra dimensions. Phys. Rev. D 65, 024032 (2002). arXiv:hep-ph/9811448

    Article  MathSciNet  ADS  Google Scholar 

  13. R.N. Mohapatra et al., Theory of neutrinos: a white paper. Rept. Prog. Phys. 70, 1757–1867 (2007). arXiv:hep-ph/0510213

    Article  ADS  Google Scholar 

  14. R.N. Mohapatra, A.Y. Smirnov, Neutrino mass and new physics. Annu. Rev. Nucl. Part. Sci. 56, 569–628 (2006). arXiv:hep-ph/0603118 and references therein

    Article  ADS  Google Scholar 

  15. J.P. Conlon, D. Cremades, The neutrino suppression scale from large volumes. Phys. Rev. Lett. 99, 041803 (2007). arXiv:hep-ph/0611144

    Article  ADS  Google Scholar 

  16. P. Nath, P. Fileviez Perez, Proton stability in grand unified theories, in strings, and in branes. Phys. Rep. 441, 191 (2007). arXiv:hep-ph/0601023

    Article  MathSciNet  ADS  Google Scholar 

  17. F. Denef, M.R. Douglas, B. Florea, Building a better racetrack. J. High Energy Phys. 0406, 034 (2004). arXiv:hep-th/0404257

    Article  MathSciNet  ADS  Google Scholar 

  18. F. Denef, Les houches lectures on constructing string vacua. arXiv:0803.1194v1 [hep-th]

  19. A. Giryavets, S. Kachru, P.K. Tripathy, S.P. Trivedi, Flux compactifications on Calabi–Yau threefolds. J. High Energy Phys. 0404, 003 (2004). arXiv:hep-th/0312104

    Article  MathSciNet  ADS  Google Scholar 

  20. H. Jockers, J. Louis, The effective action of D7-branes in N=1 Calabi–Yau orientifolds. Nucl. Phys. B 705, 167 (2005). arXiv:hep-th/0409098

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. T.W. Grimm, Non-perturbative corrections and modularity in \({\mathcal{N}}=1\) type IIB compactifications. J. High Energy Phys. 0710, 004 (2007). arXiv:0705.3253 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  22. K. Becker, M. Becker, M. Haack, J. Louis, Supersymmetry breaking and alpha’—corrections to flux induced potentials. J. High Energy Phys. 0206, 060 (2002). arXiv:hep-th/0204254

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Berg, M. Haack, E. Pajer, Jumping through loops: on soft terms from large volume compactifications. J. High Energy Phys. 0709, 031 (2007). arXiv:0704.0737 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Cicoli, J.P. Conlon, F. Quevedo, Systematics of string loop corrections in type IIB Calabi–Yau flux compactifications. arXiv:0708.1873 [hep-th]

  25. M.X. Huang, A. Klemm, S. Quackenbush, Topological string theory on compact Calabi–Yau: modularity and boundary conditions. arXiv:hep-th/0612125

  26. R. Blumenhagen, B. Kors, D. Lust, T. Ott, The standard model from stable intersecting brane world orbifolds. Nucl. Phys. B 616, 3 (2001). arXiv:hep-th/0107138

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J.P. Conlon, A. Maharana, F. Quevedo, Wave functions and Yukawa couplings in local string compactifications. J. High Energy Phys. 0809, 104 (2008). arXiv:0807.0789 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  28. J.P. Conlon, F. Quevedo, K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking. J. High Energy Phys. 0508, 007 (2005). arXiv:hep-th/0505076

    Article  MathSciNet  ADS  Google Scholar 

  29. O.J. Ganor, A note on zeroes of superpotentials in F-theory. Nucl. Phys. B 499, 55 (1997). arXiv:hep-th/9612077

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. O.J. Ganor, On zeroes of superpotentials in F-theory. Nucl. Phys. B, Proc. Suppl. 67, 25 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. D. Baumann, A. Dymarsky, I.R. Klebanov, J.M. Maldacena, L.P. McAllister, A. Murugan, On D3-brane potentials in compactifications with fluxes and wrapped D-branes. J. High Energy Phys. 0611, 031 (2006). arXiv:hep-th/0607050

    Article  MathSciNet  ADS  Google Scholar 

  32. L.J. Dixon, J.A. Harvey, C. Vafa, E. Witten, Strings on orbifolds. Nucl. Phys. B 261, 678 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  33. L.J. Dixon, J.A. Harvey, C. Vafa, E. Witten, Strings on orbifolds (II). Nucl. Phys. B 274, 285 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  34. L.J. Dixon, D. Friedan, E.J. Martinec, S.H. Shenker, The conformal field theory of orbifolds. Nucl. Phys. B 282, 13 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Hamidi, C. Vafa, Interactions on orbifolds. Nucl. Phys. B 279, 465 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  36. T.T. Burwick, R.K. Kaiser, H.F. Muller, General Yukawa couplings of strings on Z N orbifolds. Nucl. Phys. B 355, 689 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Erler, D. Jungnickel, M. Spalinski, S. Stieberger, Higher twisted sector couplings of Z N orbifolds. Nucl. Phys. B 397, 379 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Kobayashi, O. Lebedev, Heterotic Yukawa couplings and continuous Wilson lines. Phys. Lett. B 566, 164 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. T. Kobayashi, O. Lebedev, Heterotic string backgrounds and CP violation. Phys. Lett. B 565, 193 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. K. Yang, Fermion masses in a strong Yukawa coupling model. Int. J. Theor. Phys. 36(9), 2023 (1997)

    Article  MATH  Google Scholar 

  41. C.R. Das, M.K. Parida, New formulas and predictions for running fermion masses at higher scales in SM, 2HDM, and MSSM. Eur. Phys. J. C 20, 121 (2001). arXiv:hep-ph/0010004

    Article  ADS  Google Scholar 

  42. K.S. Babu, C.N. Leung, J.T. Pantaleone, Renormalization of the neutrino mass operator. Phys. Lett. B 319, 191 (1993). arXiv:hep-ph/9309223

    Article  ADS  Google Scholar 

  43. K. Sasaki, M.S. Carena, C.E.M. Wagner, Renormalization group analysis of the Higgs sector in the minimal supersymmetric standard model. Nucl. Phys. B 381, 66 (1992)

    Article  ADS  Google Scholar 

  44. N. Haba, Y. Matsui, N. Okamura, Analytic solutions to the RG equations of the neutrino physical parameters. Prog. Theor. Phys. 103, 807 (2000). arXiv:hep-ph/9911481

    Article  ADS  Google Scholar 

  45. L.E. Ibanez, C. Lopez, C. Munoz, The low-energy supersymmetric spectrum according to \({\mathcal{N}}=1\) supergravity GUTs. Nucl. Phys. B 256, 218 (1985)

    Article  ADS  Google Scholar 

  46. N. Haba, Y. Matsui, N. Okamura, M. Sugiura, Energy-scale dependence of the lepton-flavor-mixing matrix. Eur. Phys. J. C 10, 677 (1999). arXiv:hep-ph/9904292

    Article  ADS  Google Scholar 

  47. J.R. Ellis, D.V. Nanopoulos, S. Rudaz, GUTs 3: SUSY GUTs 2. Nucl. Phys. B 202, 43 (1982)

    Article  ADS  Google Scholar 

  48. P. Nath, P.F. Perez, Proton stability in grand unified theories in strings, and in branes. Phys. Rep. 441, 191–317 (2007). arXiv:hep-ph/0601023

    Article  MathSciNet  ADS  Google Scholar 

  49. T. Friedmann, E. Witten, Unification scale, proton decay, and manifolds of G(2) holonomy. Adv. Theor. Math. Phys. 7, 577 (2003). arXiv:hep-th/0211269

    MathSciNet  MATH  Google Scholar 

  50. I.R. Klebanov, E. Witten, Proton decay in intersecting D-brane models. Nucl. Phys. B 664, 3 (2003). arXiv:hep-th/0304079

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. V. Braun, T. Brelidze, M.R. Douglas, B.A. Ovrut, Eigenvalues and eigenfunctions of the scalar Laplace operator on Calabi–Yau manifolds. J. High Energy Phys. 0807, 120 (2008). arXiv:0805.3689 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  52. V. Braun, T. Brelidze, M.R. Douglas, B.A. Ovrut, Calabi–Yau metrics for quotients and complete intersections. J. High Energy Phys. 0805, 080 (2008). arXiv:0712.3563 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Dhuria, A. Misra, in preparation

  54. P. Shukla, Moduli thermalization and finite temperature effects in ‘big’ divisor large volume D3/D7 Swiss-Cheese compactification. J. High Energy Phys. 1101, 088 (2011). arXiv:1010.5121 [hep-th]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aalok Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, A., Shukla, P. On ‘light’ fermions and proton stability in ‘big divisor’ D3/D7 large volume compactifications. Eur. Phys. J. C 71, 1662 (2011). https://doi.org/10.1140/epjc/s10052-011-1662-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1662-x

Keywords

Navigation