Skip to main content
Log in

Arnowitt–Deser–Misner representation and Hamiltonian analysis of covariant renormalizable gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

An Erratum to this article was published on 13 September 2011

Abstract

We study the recently proposed Covariant Renormalizable Gravity (CRG), which aims to provide a generally covariant ultraviolet completion of general relativity. We obtain a spacetime decomposed form—an Arnowitt–Deser–Misner (ADM) representation—of the CRG action. The action is found to contain time derivatives of the gravitational fields up to fourth order. Some ways to reduce the order of these time derivatives are considered. The resulting action is analyzed using the Hamiltonian formalism, which was originally adapted for constrained theories by Dirac. It is shown that the theory has a consistent set of constraints. It is, however, found that the theory exhibits four propagating physical degrees of freedom. This is one degree of freedom more than in Hořava–Lifshitz (HL) gravity and two more propagating modes than in general relativity. One extra physical degree of freedom has its origin in the higher order nature of the CRG action. The other extra propagating mode is a consequence of a projectability condition similarly as in HL gravity. Some additional gauge symmetry may need to be introduced in order to get rid of the extra gravitational degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chaichian, S. Nojiri, S.D. Odintsov, M. Oksanen, A. Tureanu, Modified F(R) Hořava–Lifshitz gravity: a way to accelerating FRW cosmology. Class. Quantum Gravity 27, 185021 (2010). arXiv:1001.4102 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Carloni, M. Chaichian, S. Nojiri, S.D. Odintsov, M. Oksanen, A. Tureanu, Modified first-order Hořava–Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in power-law F(R) model. Phys. Rev. D 82, 065020 (2010). arXiv:1003.3925 [hep-th]

    Article  ADS  Google Scholar 

  3. S. Nojiri, S.D. Odintsov, Covariant renormalizable gravity and its FRW cosmology. Phys. Rev. D 81, 043001 (2010). arXiv:0905.4213 [hep-th]

    Article  ADS  Google Scholar 

  4. S. Nojiri, S.D. Odintsov, A proposal for covariant renormalizable field theory of gravity. Phys. Lett. B 691, 60 (2010). arXiv:1004.3613 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Nojiri, S.D. Odintsov, Covariant power-counting renormalizable gravity: Lorentz symmetry breaking and accelerating early-time FRW universe. Phys. Rev. D 83, 023001 (2011). arXiv:1007.4856 [hep-th]

    Article  ADS  Google Scholar 

  6. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. (doi:10.1016/j.physrep.2011.04.001). arXiv:1011.0544 [gr-qc]

  7. P. Hořava, Quantum gravity at a Lifshitz Point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  8. T.P. Sotiriou, M. Visser, S. Weinfurtner, Phenomenologically viable Lorentz-Violating quantum gravity. Phys. Rev. Lett. 102, 251601 (2009). arXiv:0904.4464 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Blas, O. Pujolàs, S. Sibiryakov, A healthy extension of Hořava gravity. Phys. Rev. Lett. 104, 181302 (2010). arXiv:0909.3525 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Henneaux, A. Kleinschmidt, G.L. Gómez, A dynamical inconsistency of Hořava gravity. Phys. Rev. D 81, 064002 (2010). arXiv:0912.0399 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Chaichian, M. Oksanen, A. Tureanu, Hamiltonian analysis of non-projectable modified F(R) Hořava–Lifshitz gravity. Phys. Lett. B 693, 404 (2010). arXiv:1006.3235 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  12. R.L. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity, gr-qc/0405109, originally in Gravitation: An Introduction to Current Research, ed. by L. Witten, John Wiley & Sons Inc., New York, 1962. Republished in Gen. Relativ. Gravit. 40, 1997 (2008)

  13. R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)

    MATH  Google Scholar 

  14. É. Gourgoulhon, 3+1 formalism and bases of numerical relativity. arXiv:gr-qc/0703035

  15. M. Ostrogradski, Mem. Ac. St. Petersbourg VI 4, 385 (1850)

    Google Scholar 

  16. D.A. Eliezer, R.P. Woodard, The problem of nonlocality in string theory. Nucl. Phys. B 325, 389 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  17. P.A.M. Dirac, Generalized Hamiltonian dynamics. Can. J. Math. 2, 129 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  18. P.A.M. Dirac, Proc. R. Soc. Lond. Ser. A 246, 326 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964)

    Google Scholar 

  20. J.M. Pons, Ostrogradski’s theorem for higher-order singular Lagrangians. Lett. Math. Phys. 17, 181 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. J. Llosa, J. Vives, Hamiltonian formalism for nonlocal Lagrangians. J. Math. Phys. 35, 2856 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J.Z. Simon, Higher derivative Lagrangians, nonlocality, problems and solutions. Phys. Rev. D 41, 3720 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Capozziello, J. Matsumoto, S. Nojiri, S.D. Odintsov, Dark energy from modified gravity with Lagrange multipliers. Phys. Lett. B 693, 198 (2010). arXiv:1004.3691 [hep-th]

    Article  ADS  Google Scholar 

  24. J. Klusoň, Hamiltonian analysis of Lagrange multiplier modified gravity. arXiv:1009.6067 [hep-th]

  25. R.P. Woodard, Avoiding dark energy with 1/R modifications of gravity. Lect. Notes Phys. 720, 403 (2007). arXiv:astro-ph/0601672

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Tureanu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1140/epjc/s10052-011-1736-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaichian, M., Oksanen, M. & Tureanu, A. Arnowitt–Deser–Misner representation and Hamiltonian analysis of covariant renormalizable gravity. Eur. Phys. J. C 71, 1657 (2011). https://doi.org/10.1140/epjc/s10052-011-1657-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1657-7

Keywords

Navigation