Skip to main content
Log in

Identification of extra neutral gauge bosons at the International Linear Collider

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Heavy neutral gauge bosons, Z s, are predicted by many theoretical schemes of physics beyond the Standard Model, and intensive searches for their signatures will be performed at present and future high energy colliders. It is quite possible that Z s are heavy enough to lie beyond the discovery reach expected at the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z exchanges may occur at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We here discuss in this context the foreseeable sensitivity to Z s of fermion-pair production cross sections at an e + e linear collider, especially as regards the potential of distinguishing different Z models once such deviations are observed. Specifically, we assess the discovery and identification reaches on Z gauge bosons pertinent to the E 6, LR, ALR and SSM classes of models, that should be attained at the planned International Linear Collider (ILC). With the high experimental accuracies expected at the ILC, the discovery and the identification reaches on the Z models under consideration could be increased substantially. In particular, the identification among the different models could be achieved for values of Z masses in the discovery (but beyond the identification) reach of the LHC. An important role in enhancing such reaches is played by the electron (and possibly the positron) longitudinally polarized beams. Also, although the purely leptonic processes are experimentally cleaner, the measurements of c- and b-quark pair production cross sections are found to carry important, and complementary, information on these searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Langacker, arXiv:0801.1345 [hep-ph]

  2. T.G. Rizzo, arXiv:hep-ph/0610104

  3. A. Leike, Phys. Rep. 317, 143 (1999). arXiv:hep-ph/9805494

    Article  ADS  Google Scholar 

  4. J.L. Hewett, T.G. Rizzo, Phys. Rep. 183, 193 (1989)

    Article  ADS  Google Scholar 

  5. J. Erler, P. Langacker, S. Munir, E.R. Pena, J. High Energy Phys. 0908, 017 (2009). arXiv:0906.2435 [hep-ph]

    Article  ADS  Google Scholar 

  6. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 171802 (2007). arXiv:0707.2524 [hep-ex]

    Article  ADS  Google Scholar 

  7. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 091805 (2009). arXiv:0811.0053 [hep-ex]

    Article  ADS  Google Scholar 

  8. R.J. Hooper (D0 Collaboration), Int. J. Mod. Phys. A 20, 3277 (2005)

    Article  ADS  Google Scholar 

  9. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). arXiv:hep-ph/9905221

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/9906064

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. J. Kalinowski, R. Ruckl, H. Spiesberger, P.M. Zerwas, Phys. Lett. B 406, 314 (1997). arXiv:hep-ph/9703436

    Article  ADS  Google Scholar 

  12. J. Kalinowski, R. Ruckl, H. Spiesberger, P.M. Zerwas, Phys. Lett. B 414, 297 (1997). arXiv:hep-ph/9708272

    Article  ADS  Google Scholar 

  13. T.G. Rizzo, Phys. Rev. D 59, 113004 (1999). arXiv:hep-ph/9811440

    Article  ADS  Google Scholar 

  14. B.C. Allanach, K. Odagiri, M.A. Parker, B.R. Webber, J. High Energy Phys. 0009, 019 (2000). arXiv:hep-ph/0006114

    Article  ADS  Google Scholar 

  15. B.C. Allanach, K. Odagiri, M.J. Palmer, M.A. Parker, A. Sabetfakhri, B.R. Webber, J. High Energy Phys. 0212, 039 (2002). arXiv:hep-ph/0211205

    Article  ADS  Google Scholar 

  16. M. Dittmar, A.S. Nicollerat, A. Djouadi, Phys. Lett. B 583, 111 (2004). arXiv:hep-ph/0307020

    Article  ADS  Google Scholar 

  17. R. Cousins, J. Mumford, J. Tucker, V. Valuev, J. High Energy Phys. 0511, 046 (2005)

    Article  ADS  Google Scholar 

  18. S. Godfrey, P. Kalyniak, A. Tomkins, arXiv:hep-ph/0511335

  19. S. Godfrey, T.A.W. Martin, Phys. Rev. Lett. 101, 151803 (2008). arXiv:0807.1080 [hep-ph]

    Article  ADS  Google Scholar 

  20. R. Diener, S. Godfrey, T.A.W. Martin, arXiv:0910.1334 [hep-ph]

  21. D. Feldman, Z. Liu, P. Nath, J. High Energy Phys. 0611, 007 (2006). arXiv:hep-ph/0606294

    Article  ADS  Google Scholar 

  22. F. Petriello, S. Quackenbush, Phys. Rev. D 77, 115004 (2008). arXiv:0801.4389 [hep-ph]

    Article  ADS  Google Scholar 

  23. Y. Li, F. Petriello, S. Quackenbush, Phys. Rev. D 80, 055018 (2009). arXiv:0906.4132 [hep-ph]

    Article  ADS  Google Scholar 

  24. P. Osland, A.A. Pankov, N. Paver, A.V. Tsytrinov, Phys. Rev. D 78, 035008 (2008). arXiv:0805.2734 [hep-ph]

    Article  ADS  Google Scholar 

  25. P. Osland, A.A. Pankov, N. Paver, A.V. Tsytrinov, arXiv:0902.1593 [hep-ph]

  26. H. Murayama, V. Rentala, arXiv:0904.4561 [hep-ph]

  27. P. Osland, A.A. Pankov, A.V. Tsytrinov, N. Paver, Phys. Rev. D 79, 115021 (2009). arXiv:0904.4857 [hep-ph]

    Article  ADS  Google Scholar 

  28. E. Salvioni, G. Villadoro, F. Zwirner, arXiv:0909.1320 [hep-ph]

  29. T.G. Rizzo, J. High Energy Phys. 0908, 082 (2009). arXiv:0904.2534 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  30. J. Brau et al. (ILC Collaboration), ILC reference design report volume 1—executive summary. arXiv:0712.1950 [physics.acc-ph]

  31. G. Aarons et al. (ILC Collaboration), International linear collider reference design report volume 2: Physics at the ILC. arXiv:0709.1893 [hep-ph]

  32. G.A. Moortgat-Pick et al., Phys. Rep. 460, 131 (2008). arXiv:hep-ph/0507011

    Article  ADS  Google Scholar 

  33. M. Cvetic, S. Godfrey, Discovery and identification of extra gauge bosons. arXiv:hep-ph/9504216

  34. S. Riemann, LC report LC-TH-2001-007

  35. A. Djouadi, A. Leike, T. Riemann, D. Schaile, C. Verzegnassi, Z. Phys. C 56, 289 (1992)

    Article  ADS  Google Scholar 

  36. A.V. Gulov, V.V. Skalozub, Phys. Rev. D 70, 115010 (2004). arXiv:hep-ph/0408076

    Article  ADS  Google Scholar 

  37. A.A. Pankov, N. Paver, A.V. Tsytrinov, Phys. Rev. D 73, 115005 (2006). arXiv:hep-ph/0512131

    Article  ADS  Google Scholar 

  38. G. Weiglein et al. (LHC/LC Study Group), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364

    Article  ADS  Google Scholar 

  39. J.L. Hewett, Phys. Rev. Lett. 82, 4765 (1999). arXiv:hep-ph/9811356

    Article  ADS  Google Scholar 

  40. H. Davoudiasl, J.L. Hewett, T.G. Rizzo, Phys. Rev. Lett. 84, 2080 (2000). arXiv:hep-ph/9909255

    Article  ADS  Google Scholar 

  41. B. Schrempp, F. Schrempp, N. Wermes, D. Zeppenfeld, Nucl. Phys. B 296, 1 (1988)

    Article  ADS  Google Scholar 

  42. A.A. Pankov, N. Paver, Eur. Phys. J. C 29, 313 (2003). arXiv:hep-ph/0209058

    Article  ADS  Google Scholar 

  43. S. Riemann, A. Schalicke, A. Ushakov, DESY 09-038. arXiv:0903.2366 [physics.ins-det]

  44. B. Aurand et al., Report DESY-09-042. arXiv:0903.2959 [physics. acc-ph]

  45. S. Boogert et al., ILC-NOTE-2009-049. arXiv:0904.0122 [physics.ins-det]

  46. W.T. Eadie, D. Drijard, F.E. James, M. Roos, B. Sadoulet, Statistical Methods in Experimental Physics (Elsevier, New York, 1971)

    MATH  Google Scholar 

  47. F. Cuypers, P. Gambino, Phys. Lett. B 388, 211 (1996). arXiv:hep-ph/9606391

    Article  ADS  Google Scholar 

  48. F. Cuypers, arXiv:hep-ph/9611336

  49. A.A. Babich, P. Osland, A.A. Pankov, N. Paver, Phys. Lett. B 518, 128 (2001). arXiv:hep-ph/0107159

    Article  ADS  Google Scholar 

  50. M. Consoli, W. Hollik, F. Jegerlehner, CERN-TH-5527-89, Presented at Workshop on Z Physics at LEP

  51. G. Altarelli, R. Casalbuoni, D. Dominici, F. Feruglio, R. Gatto, Nucl. Phys. B 342, 15 (1990)

    Article  ADS  Google Scholar 

  52. O. Nicrosini, L. Trentadue, in Radiative Corrections for e + e Collisions, vol. 25, ed. by J.H. Kühn (Springer, Berlin, 1989), p. 25

    Google Scholar 

  53. O. Nicrosini, L. Trentadue, in QED Structure Functions, Ann Arbor, MI, 1989, ed. by G. Bonvicini, AIP Conf. Proc., vol. 201 (AIP, New York, 1990), p. 12

    Google Scholar 

  54. W. Benakker, F.A. Berends, Proc. of the Workshop on Physics at LEP2, CERN 96-01, vol. 1, p. 79 and references therein

  55. D.Y. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann, T. Riemann, Comput. Phys. Commun. 133, 229 (2001). arXiv:hep-ph/9908433

    Article  MATH  ADS  Google Scholar 

  56. T.G. Rizzo, Phys. Rev. D 55, 5483 (1997). arXiv:hep-ph/9612304

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Osland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osland, P., Pankov, A.A. & Tsytrinov, A.V. Identification of extra neutral gauge bosons at the International Linear Collider. Eur. Phys. J. C 67, 191–204 (2010). https://doi.org/10.1140/epjc/s10052-010-1272-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1272-z

Keywords

Navigation