Skip to main content

Advertisement

SpringerLink
  1. Home
  2. The European Physical Journal C
  3. Article
A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

EPPS21: a global QCD analysis of nuclear PDFs

07 May 2022

Kari J. Eskola, Petja Paakkinen, … Carlos A. Salgado

Ad Lucem: QED parton distribution functions in the MMHT framework

01 October 2019

L. A. Harland-Lang, A. D. Martin, … R. S. Thorne

QED parton distribution functions in the MSHT20 fit

29 January 2022

T. Cridge, L. A. Harland-Lang, … R. S. Thorne

Can we fit nuclear PDFs with the high-x CLAS data?

08 May 2020

Hannu Paukkunen & Pia Zurita

Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data

20 April 2018

Richard D. Ball, Valerio Bertone, … Luca Rottoli

Approximate N $$^{3}$$ 3 LO parton distribution functions with theoretical uncertainties: MSHT20aN $$^3$$ 3 LO PDFs

01 March 2023

J. McGowan, T. Cridge, … R. S. Thorne

Calculations for deep inelastic scattering using fast interpolation grid techniques at NNLO in QCD and the extraction of $$\alpha _{\mathrm {s}}$$ α s from HERA data

14 October 2019

D. Britzger, J. Currie, … M. R. Sutton

Machine learning of log-likelihood functions in global analysis of parton distributions

05 August 2022

DianYu Liu, ChuanLe Sun & Jun Gao

Constraints on nuclear parton distributions from dijet photoproduction at the LHC

08 May 2019

V. Guzey & M. Klasen

Download PDF
  • Special Article - Tools for Experiment and Theory
  • Open Access
  • Published: 23 February 2010

A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project

  • Tancredi Carli1,
  • Dan Clements2,
  • Amanda Cooper-Sarkar3,
  • Claire Gwenlan3,
  • Gavin P. Salam4,
  • Frank Siegert5,
  • Pavel Starovoitov1,6 &
  • …
  • Mark Sutton7 

The European Physical Journal C volume 66, pages 503–524 (2010)Cite this article

  • 908 Accesses

  • 165 Citations

  • Metrics details

Abstract

A method to facilitate the consistent inclusion of cross-section measurements based on complex final-states from HERA, TEVATRON and the LHC in proton parton density function (PDF) fits has been developed. This can be used to increase the sensitivity of LHC data to deviations from Standard Model predictions. The method stores perturbative coefficients of NLO QCD calculations of final-state observables measured in hadron colliders in look-up tables. This allows the a posteriori inclusion of parton density functions (PDFs), and of the strong coupling, as well as the a posteriori variation of the renormalisation and factorisation scales in cross-section calculations. The main novelties in comparison to original work on the subject are the use of higher-order interpolation of Lagrangian form, which substantially improves the trade-off between accuracy and memory use, and a CPU and computer memory optimised way to construct and store the look-up table using modern software tools. It is demonstrated that a sufficient accuracy on the cross-section calculation can be achieved with reasonably small look-up table size by using the examples of jet production and electro-weak boson (Z, W) production in proton-proton collisions at a center-of-mass energy of 14 TeV at the LHC. The use of this technique in PDF fitting is demonstrated in a PDF-fit to HERA data and simulated LHC jet cross-sections as well as in a study of the jet cross-section uncertainties at various centre-of-mass energies.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Graudenz, M. Hampel, A. Vogt, C. Berger, Z. Phys. C 70, 77 (1996)

    Article  Google Scholar 

  2. D.A. Kosower, Nucl. Phys. B 520, 263 (1998)

    Article  ADS  Google Scholar 

  3. M. Stratmann, W. Vogelsang, Phys. Rev. D 64, 114007 (2001)

    Article  ADS  Google Scholar 

  4. M. Wobisch, Internal Report PITHA 00/12 and DESY-THESIS-2000-049, PhD-thesis RWTH Aachen, 2000

  5. S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 42, 1 (2005)

    Article  ADS  Google Scholar 

  6. P.G. Ratcliffe, Phys. Rev. D 63, 116004 (2001)

    Article  ADS  Google Scholar 

  7. M. Dasgupta, G.P. Salam, Eur. Phys. J. C 24, 213 (2002)

    Article  ADS  Google Scholar 

  8. G.P. Salam, J. Rojo, Comput. Phys. Commun. 180, 120 (2009)

    Article  ADS  Google Scholar 

  9. T. Carli, G.P. Salam, F. Siegert, Contributed to HERA and the LHC: a Workshop on the Implications of HERA for LHC Physics, Geneva, Switzerland. hep-ph/0510324 (2005)

  10. T. Kluge, K. Rabbertz, M. Wobisch, in Proceedings of the DIS 2006 Conference, Tsukuba, Japan, hep-ph/0609285 (2006)

  11. A. Banfi, G.P. Salam, G. Zanderighi, J. High Energy Phys. 07, 026 (2007)

    Article  ADS  Google Scholar 

  12. S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  13. Z. Nagy, Phys. Rev. D 68, 094002 (2003)

    Article  ADS  Google Scholar 

  14. Z. Nagy, Phys. Rev. Lett. 88, 122003 (2002)

    Article  ADS  Google Scholar 

  15. Z. Nagy, Z. Trocsanyi, Phys. Rev. Lett. 87, 082001 (2001)

    Article  ADS  Google Scholar 

  16. J.M. Campbell, R.K. Ellis, Phys. Rev. D 60, 113006 (1999)

    Article  ADS  Google Scholar 

  17. J.M. Campbell, R.K. Ellis, Phys. Rev. D 62, 114012 (2000)

    Article  ADS  Google Scholar 

  18. J. Pumplin et al. (CTEQ Collaboration), J. High Energy Phys. 07, 012 (2002)

    Article  ADS  Google Scholar 

  19. G.C. Blazey et al., hep-ex/0005012 (2000)

  20. G.P. Salam, G. Soyez, J. High Energy Phys. 0705, 086 (2007)

    Article  ADS  Google Scholar 

  21. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 005 (2008)

    Article  ADS  Google Scholar 

  22. P.M. Nadolsky et al. (CTEQ Collaboration), Phys. Rev. D 78, 013004 (2008)

    Article  ADS  Google Scholar 

  23. A.D. Martin, W. J Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189–285 (2009)

    Article  ADS  Google Scholar 

  24. H1 and ZEUS Collaborations, H1prelim-08-045; ZEUS-prel-08-003 (2008)

  25. R. Ball et al. Nucl. Phys. B 809, 1–63 (2009)

    Article  ADS  Google Scholar 

  26. J.M. Campbell, J.W. Huston, W.J. Stirling, Rep. Prog. Phys. 70, 89 (2007)

    Article  ADS  Google Scholar 

  27. W.T. Giele, E.W.N. Glover, D.A. Kosower, Nucl. Phys. B 403, 633 (1993)

    Article  ADS  Google Scholar 

  28. D. Stump et al. (CTEQ Collaboration), J. High Energy Phys. 0310, 046 (2003)

    Article  ADS  Google Scholar 

  29. M. Botje, J. Phys. G 28, 779 (2002)

    Article  ADS  Google Scholar 

  30. S.I. Alekhin, IHEP-2000-17 and hep-ex/0005042 (2000)

  31. A.M. Cooper-Sarkar, J. Phys. G 28, 2609 (2002)

    Article  Google Scholar 

  32. R.S. Thorne et al., J. Phys. G 28, 2717 (2002)

    Article  ADS  Google Scholar 

  33. A.M. Cooper-Sarkar, in Proceedings of the DIS 2007 Conference, Munich, Germany, 0707.1593 [hep-ph] (2007)

  34. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  35. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, CERN, Geneva, Switzerland

    Tancredi Carli & Pavel Starovoitov

  2. University of Glasgow, Glasgow, UK

    Dan Clements

  3. University of Oxford, Oxford, UK

    Amanda Cooper-Sarkar & Claire Gwenlan

  4. LPTHE, UPMC Univ. Paris 6 and CNRS UMR 7589, Paris 05, France

    Gavin P. Salam

  5. IPPP, Durham University, Durham, UK

    Frank Siegert

  6. Nat. Sci. Educ. Center of Part. and HEP, Minsk, Belarus

    Pavel Starovoitov

  7. University of Sheffield, Sheffield, UK

    Mark Sutton

Authors
  1. Tancredi Carli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Dan Clements
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Amanda Cooper-Sarkar
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Claire Gwenlan
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Gavin P. Salam
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Frank Siegert
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Pavel Starovoitov
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Mark Sutton
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tancredi Carli.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Carli, T., Clements, D., Cooper-Sarkar, A. et al. A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project. Eur. Phys. J. C 66, 503–524 (2010). https://doi.org/10.1140/epjc/s10052-010-1255-0

Download citation

  • Received: 16 November 2009

  • Revised: 25 December 2009

  • Published: 23 February 2010

  • Issue Date: April 2010

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1255-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Large Hadron Collider
  • Large Hadron Collider Data
  • Parton Density Function
  • Posteriori Variation
  • Weight Grid
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.